Chapter 4 Network Layer: Data Plane

Yaxiong Xie

Department of Computer Science and Engineering University at Buffalo, SUNY

Adapted from the slides of the book's authors

Computer Networking: A Top-Down Approach 8th edition Jim Kurose, Keith Ross Pearson, 2020

Router architecture overview

high-level view of generic router architecture:

This is a really important slide

- Buffering required when datagrams arrive from fabric faster than link transmission rate. *Drop policy:* which datagrams to drop if no free buffers?
- Scheduling discipline chooses among queued datagrams for transmission

Datagrams can be lost due to congestion, lack of buffers

Priority scheduling – who gets best performance, network neutrality

Output port queuing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gbps link: 2.5 Gbit buffer
- more recent recommendation: with N flows, buffering equal to

- but too much buffering can increase delays (particularly in home routers)
 - long RTTs: poor performance for real-time apps, sluggish TCP response
 - recall delay-based congestion control: "keep bottleneck link just full enough (busy) but no fuller"

Buffer Management

buffer management:

- drop: which packet to add, drop when buffers are full
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
- marking: which packets to mark to signal congestion (ECN, RED)

Packet Scheduling: FCFS

packet scheduling: deciding which packet to send next on link

- first come, first served
- priority
- round robin
- weighted fair queueing

Abstraction: queue

FCFS: packets transmitted in order of arrival to output port

- also known as: First-in-firstout (FIFO)
- real world examples?

Scheduling policies: priority

Priority scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- send packet from highest priority queue that has buffered packets
 - FCFS within priority class

Scheduling policies: round robin

Round Robin (RR) scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- server cyclically, repeatedly scans class queues, sending one complete packet from each class (if available) in turn

Scheduling policies: weighted fair queueing

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class, *i*, has weight, w_i, and gets weighted amount of service in each cycle:

$$\frac{\boldsymbol{W}_i}{\boldsymbol{\Sigma}_j \boldsymbol{W}_j}$$

 minimum bandwidth guarantee (per-traffic-class)

Sidebar: Network Neutrality

What is network neutrality?

- technical: how an ISP should share/allocation its resources
 - packet scheduling, buffer management are the *mechanisms*
- social, economic principles
 - protecting free speech
 - encouraging innovation, competition
- enforced *legal* rules and policies

Different countries have different "takes" on network neutrality

Sidebar: Network Neutrality

2015 US FCC Order on Protecting and Promoting an Open Internet: three "clear, bright line" rules:

- no blocking ... "shall not block lawful content, applications, services, or non-harmful devices, subject to reasonable network management."
- no throttling ... "shall not impair or degrade lawful Internet traffic on the basis of Internet content, application, or service, or use of a non-harmful device, subject to reasonable network management."

no paid prioritization. ... "shall not engage in paid prioritization"

ISP: telecommunications or information service?

Is an ISP a "telecommunications service" or an "information service" provider?

the answer *really* matters from a regulatory standpoint!

US Telecommunication Act of 1934 and 1996:

- Title II: imposes "common carrier duties" on telecommunications services: reasonable rates, non-discrimination and requires regulation
- *Title I:* applies to *information services:*
 - no common carrier duties (*not regulated*)
 - but grants FCC authority "... as may be necessary in the execution of its functions".

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - match+action
 - OpenFlow: match+action in action
- Middleboxes

Network Layer: Internet

host, router network layer functions:

IP Datagram format

Network Layer: 4-52

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router *interface*
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router *interface*
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

223

223.1.1.1 = 110111111 00000001 0000001 0000001

Network Laver: 4-54

IP addressing: introduction

Q: how are interfaces actually connected? A: we'll learn about

that in chapters 6, 7

For now: don't need to worry about how one interface is connected to another (with no intervening router)

connected by WiFi base station

Subnets

What's a subnet ?

- Subnet is a logical subdivision of an IP network.
- The practice of dividing a network into two or more networks is called subnetting

An IP network: **192.168.1.0** to **192.168.1.255**

Subnets

- What's a subnet ?
 - Subnet is a logical subdivision of an IP network.
 - The practice of dividing a network into two or more networks is called subnetting

An IP network: **192.168.1.0** to **192.168.1.255**

Subnets

- What's a subnet ?
 - Subnet is a logical subdivision of an IP network.

An IP network: **192.168.1.0** to **192.168.1.255**

Subnet Mask

An IP address has two parts: the network portion and the host portion

- Network portion identifies the network
- Host portion identifies the specific device within that network.

Binary Notation of IP Address and Subnet

Subnet Mask

An IP address has two parts: the network portion and the host portion

- Network portion identifies the network
- Host portion identifies the specific device within that network.

Binary Notation of IP Address and Subnet

- The sequence of 1s in the subnet mask indicates which bits of the IP address belong to the network portion
- The sequence of 0s indicates which bits belong to the host portion.

Subnet and CIDR

CIDR: Classless InterDomain Routing (pronounced "cider")

• address format: a.b.c.d/x, where x is # bits in subnet portion of address

Binary Notation of IP Address and Subnet

