Chapter 3 s
Transport Layer '

Yaxiong Xie

Department of Computer Science and Engineering
University at Buffalo, SUNY

NETWORKING

) A TOP-DOWN APPROACH -

Eighth Edition

T Ll ‘g‘f“‘

—

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Adapted from the slides of the book’s authors Pearson, 2020

Transport Layer: 3-1

Stop-and-wait operation

sending

8
receiving
process

process
application data
>
Stop-and-wait 1
& -« (.
ACK ACK

Transport Layer: 3-77

Packet transmission takes time

-

Source

Packet transmission takes time

A\

S

O

urce

Packet transmission takes time

A\

S

O

urce

Packet transmission takes time

()

Source

Packet transmission takes time

1)

Packet transmission takes time

()

Source

Packet transmission takes time

()

Source

Packet transmission takes time

Packet

4 N Ve oo
sourcemmmm(] Rouer

ACK

Stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0
t

[first packet bit arrives
RTT last packet bit arrives, send ACK

ACK arrives, send next|

packet, t=RTT + L/ R_\ ----------------------
\

Transport Layer: 3-86

Solution: Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets

4\ =) o=

Source (() Router

Transport Layer: 3-87

Solution: Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets

4\ ==ESTITITT ==

Source (() Router

Transport Layer: 3-88

Solution: Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets

4\ ssmESESTIEEE ==

Source (O Router

Transport Layer: 3-89

Solution: Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets

4 SEsmsssTTmTTTTE ==

Source (O Router

Transport Layer: 3-90

Solution: Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets

4 EEeeeesEesEseaas) ==

Source I ——] E— E—|—) f— Router

Transport Layer: 3-91

Pipelining: desigh question: when to stop

& i
& sending receiving ‘!
process process
application data py

PEDEERE -

Should we keep sending as many packets
as possible?

Transport Layer: 3-92

Pipelining: desigh question: when to stop

receiving
process

data

<o, sending
~ process
application

transport

1213 4 516 7 1S IR

4 EEeeeesEesEseaas) ==

Source I ——] E— E—|—) f— Router

We should stop when the network is full!

Transport Layer: 3-93

ATTRTUODO0OuonouonbueuebabaL . | s

\ Y |:|
Window Size N

Sliding Window

1L

Sliding Window

Window Size N

)
ACK

I sent and ACKed

H sent, not yet ACKed

H Not yet sent

MTTRTODO0uonouonueuebabaL . | s

[| ' |:|
‘ Window Size N
—
ACK

Sliding Window

l Timeout: retransm|55|on

ATRRRRECDOOOVLOOLOUOIIOND e R

4 H sent, not yet ACKed

mdow Size N

X

= Timer for oldest in-flight packet
* Timeout(n): retransmit packet n and all higher seq # packets in window

Transport Layer: 3-98

Sliding Window + cumulative ACK

Window Size N

8T

eeeeeee

{1 R H

Sliding Window + cumulative ACK

Windomll Size N

11T

eeeeeee

|:| sent, not yet ACKed

.
B OO

Sliding Window + cumulative ACK

Window Size N

B 11 O R i s

|:| sent, not yet ACKed

Sender
Receiver

1111 ' '
Ty b e Do

H received, not yet ACKed

Sliding Window + cumulative ACK

Window Size N

8 111 O R s s

H sent, not yet ACKed

Sender
Receiver

1111 ' '
Ty b oo Lo

H received, not yet ACKed

= cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
 on receiving ACK(n): move window forward to begin at n+1

Sliding Window + cumulative ACK: out-of-order
Window Size N

8 111 O R s s

H sent, not yet ACKed

Sender
Receiver

TRy § e P

H received, not yet ACKed

1. dowe need to send ACK when we receive an out-of-order
Two Question: packet? If yes, what kind of ACK?

Sliding Window + cumulative ACK: out-of-order

Window Size N

B 111 R i s

H sent, not yet ACKed

Sender

Receiver P

B OO il St

H received, not yet ACKed

1. dowe need to send ACK when we receive an out-of-order
Two Question: packet? If yes, what kind of ACK?

2. how shall we deal with the out-of-order packets we received?
Transport Layer: 3-104

Sliding Window + cumulative ACK: out-of-order

Window Size N

B 111 R i s

H sent, not yet ACKed

Sender

Receiver ? X

B OO il St

H received, not yet ACKed

1. dowe need to send ACK when we receive an out-of-order
Two Question: packet? If yes, what kind of ACK?

2. how shall we deal with the out-of-order packets we received?
Transport Layer: 3-105

Sliding Window + cumulative ACK: out-of-order
Window Size N

T e S

H sent, not yet ACKed

Sender
Receiver

I il Ao

H received, not yet ACKed

= ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
* may generate duplicate ACKs

Sliding Window + cumulative ACK: out-of-order

Windov:l Size N
1

8 111 O R s s

H sent, not yet ACKed

Sender
Receiver

L DT ERERA N

" on receipt of out-of-order packet:

e can discard (don’t buffer) or buffer: an implementation decision
* re-ACK pkt with highest in-order seq # Transport Layer: 3-107

received and ACKed H Not yet received

H received, not yet ACKed

Go-Back-N: sender

" sender: “window” of up to N, consecutive transmitted but unACKed pkts
* k-bit seq #in pkt header

send_base - nexfsegnum dlready sable. not
ack’'ed yet sent
IO | e [s
y S wmdow size —4 -
N

» cumulative ACK: ACK(n): ACKs all packets up to, including seq # n
* onreceiving ACK(n): move window forward to begin at n+1
= timer for oldest in-flight packet
" timeout(n): retransmit packet n and all higher seq # packets in window

Transport Layer: 3-108

Go-Back-N: receiver

= ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
* may generate duplicate ACKs
* need only remember rcv base

" on receipt of out-of-order packet:
e can discard (don’t buffer) or buffer: an implementation decision
* re-ACK pkt with highest in-order seq #

Receiver view of sequence number Space: _
received and ACKed

I I I I I Q I I I H |] H HH I Out-of-order: received but not ACKed

rcv base)
— Not received

Transport Layer: 3-109

Go-Back-N in action

sender window (N=4) sender recejver
¥} 5678 send pktO
012 3 LA send pktl \ .
EEE): 5675 send pktz-\ receive pkt0, send ackO
0123 eE send pkt3 X /oss receive pktl, send ackl
it
(watt) receive pkt3, discard,
oFEEM 678 rcv ack0, send pktd (re)send ackl
O1EEREI0 78 rev ackl, send pkt5 receive pkt4, discard,
(re)send ackl
_ignore duplicate ACK receive pkt5, discard,
pkt 2 timeout - (re)send ackl
0 1 EEYY6 7 8 send pkt2
0 1EENH6 7 8 send pkt3 \ _
012 3 4 5 A send pkt4 rcv pkt2, deliver, send ack2
0 1PEYEEs 7 8 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4

rcv pkt5, deliver, send ack5
/ Transport Layer: 3-110

Sliding Window + selective repeat

Transport Layer: 3-111

Sliding Window + selective repeat

Window Size N

8T

eeeeeee

{1 R H

Sliding Window + selective repeat

TCoCoquoumooaonammmn .

Sender
Receiver

Windomll Size N

Sliding Window + selective repeat

Windomll Size N

TR el B

|:| sent, not yet ACKed

Sender
Receiver

Ty § e P

H received, not yet ACKed

Sliding Window + selective repeat: out-of-order
Window Size N

8 111 O R s s

|:| sent, not yet ACKed

Sender
Receiver

TRy § e P

H received, not yet ACKed

Sliding Window + selective repeat: out-of-order
Window Size N

8 11O R i s

|:| sent, not yet ACKed

Sender
Receiver

Ty § e P

H received, not yet ACKed

Sliding Window + selective repeat: out-of-order
Window Size N

8 T R s s

H sent, not yet ACKed

Sender
Receiver

Ty § e P

H received, not yet ACKed

m receiver individually ACKs all correctly received packets
 buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Windov:l Size N

B T R s s

H sent, not yet ACKed

Sender
Receiver

Ty b e P

H received, not yet ACKed

m receiver individually ACKs all correctly received packets
 buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Windov:l Size N
1

B L T R i s

H sent, not yet ACKed

Sender
Receiver

Ty § e P

H received, not yet ACKed

m receiver individually ACKs all correctly received packets
 buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Windov:l Size N

B T i s

H sent, not yet ACKed

Sender
Receiver

Ty b e Do

H received, not yet ACKed

m receiver individually ACKs all correctly received packets
 buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Windov:l Size N
1

B LT s s

H sent, not yet ACKed

Sender
Receiver

TRy © e P

H received, not yet ACKed

m receiver individually ACKs all correctly received packets
 buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order
Window Size N

B 000 T s s

H sent, not yet ACKed

Sender
Receiver

TRy © e P

H received, not yet ACKed

m receiver individually ACKs all correctly received packets
 buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order
Window Size N

B 000 T s s

H sent, not yet ACKed

Sender
Receiver

TRy © e P

H received, not yet ACKed

m receiver individually ACKs all correctly received packets
 buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat

Windomll Size N

...IIIIIIIIQH[ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂ... el B

444 H sent, not yet ACKed

Sender

Receiver

Ty b e P

H received, not yet ACKed

= Maintains (conceptually) a timer for each unACKed pkt

* timeout: retransmits single unACKed packet associated with timeout

Selective repeat: the approach

" pipelining: multiple packets in flight

= receiver individually ACKs all correctly received packets
e buffers packets, as needed, for in-order delivery to upper layer

=sender:
* maintains (conceptually) a timer for each unACKed pkt
* timeout: retransmits single unACKed packet associated with timeout

* maintains (conceptually) “window” over N consecutive seq #s
* limits pipelined, “in flight” packets to be within this window

Transport Layer: 3-125

Selective repeat: sender, receiver windows

send_base hexfsegnum dlready Usable. not
Jv ly ack’ed yet sent
(AT =y gt

y S window size —24
PN

i (a) sender view of sequence numbers

Selective Repeat in action

sender window (N=4) sender recelver

Y 5678 send pkt0

FFEE]: 5673 send pktl \ ive pkt0, send ack0

RERE]: 56 78 send pkt2- receive pkt0, send ac

Y. 5678 send pkt3 \X/oss receive pktl, send ackl
(wait)

receive pkt3, buffer,
oFfEERE 678 rcv ack0, send pkt4 send ack3

O 1E=EXN6 78 rcv ackl, send pkt5 receive pkt4, buffer

record ack3 arrived _ send ack4
- receive pkt5, buffer,
DKt 2 timeout | send ack5

0 1 EEYY6 7 8 send pkt2

0§12 3 4 5 A (but not 3,4,5) \

0 1Y EY6 7 8 rcv pkt2; deliver pkt2,

0 1EEYES6 7 8 / pkt3, pkt4, pkt5; send ack2

Transport Layer: 3-128

Chapter 3: roadmap

= Connection-oriented transport: TCP
e segment structure
* reliable data transfer
* flow control
* connection management

Transport Layer: 3-129

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

" point-to-point: = cumulative ACKs
* one sender, one receiver = pipelining:
" reliable, in-order byte * TCP congestion and flow control
steam: set window size
* no “message boundaries” = connection-oriented:
= full duplex data: * handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

* bi-directional data flow in
same connection

e MSS: maximum segment size ® flow controlled:
e sender will not overwhelm receiver

Transport Layer: 3-130

TCP segment structure

ACK: seq # of next expected

byte; A bit: this is an ACK ~~——_

length (of TCP header)
Internet checksum

C, E: congestion notification
TCP options
RST, SYN, FIN: connection

management

P

32 hits

Sou

v

rce port # dest port #

seguence number

——acknowledgement number

head| not

len |used={=

\5

clelulale(rls|F| receive window

Pt

1

hecksdm

tions (variable length)

ey

/

/

application
data

segment seq #: counting

bytes of data into bytestream
(not segments!)

flow control: # bytes
receiver willing to accept

data sent by

(variable length)

application into
TCP socket

Transport Layer: 3-131

TCP sequence numbers, ACKs

Sequence numbers:

* byte stream “number” of
first byte in segment’s data

Acknowledgements:

* seq # of next byte expected
from other side

e cumulative ACK

Q: how receiver handles out-of-
order segments
A TCP spec doesn’t say, - up
to implementor

source port #

dest port #

sequence number

acknowledgement number

rwnd

checksum

urg pointer

sender sequence number space

window siz

outgoing segment from sender

N

sent
ACKed

sent not-

usable
yet ACKed but not usable
(in-flight”) yet sent

not

source port #

dest port #

sequenc

A

e number

acknowledgement number

rwnd

checksum

urg pointer

putgoing segment from receiver

Transport Layer: 3-132

TCP sequence numbers, ACKs

Host Aq & Host B

User types C’ —
Seg \CK=79, data = ‘C’ :
dk host ACKs receipt
of ‘C’, echoes back ‘C’

Seo CK
host ACKs receipt

of echoed ‘C’ \Sevq=43\AC

simple telnet scenario

Transport Layer: 3-133

TCP round trip time, timeout

Q: how to set TCP timeout Q: how to estimate RTT?
value? " SampleRTT :measured time
= longer than RTT, but RTT varies! from segment transmission until

ACK receipt

* ignore retransmissions

" SampleRTT will vary, want
estimated RTT “smoother”
¢ dverage several recent

measurements, not just current
SampleRTT

" too short: premature timeout,
unnecessary retransmissions

" too long: slow reaction to
segment loss

Transport Layer: 3-134

TCP round trip time, timeout

EstimatedRTT = (l1- o) *EstimatedRTT + a*SampleRTT

= exponential weighted moving average (EWMA)
" influence of past sample decreases exponentially fast

= typical value: a0 =0.125

RTT (milliseconds)

350 -

300

250

200

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

i o N\Am

€ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconds)
Transport Layer: 3-135

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimjted RTT “safetyIm argin”

" DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

DevRTT = (1-f)*DevRTT + [*|SampleRTT-EstimatedRTT |

(typically, B =0.25)

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
Transport Layer: 3-136

TCP Sender (simplified)

event: data received from event: timeout
application " retransmit segment that

. caused timeout
" create segment with seq # . restart timer

" seq # is byte-stream number

of first data byte in segment event: ACK received

= start timer if not already :
running if ACK acknowledges

reviously unACKed segments
e think of timer as for oldest P Y , 5
unACKed segment e update what is known to be

o ACKed
e expiration interval:

TimeOutInterval start timer if there are still
unACKed segments

Transport Layer: 3-137

TCP Receiver: ACK generation (rrcsssi,

Event at receiver ‘ TCP receiver action

TCP: retransmission scenarios

I
O
wn
~
>

['F

le—— timeout —*

\
Seq=92, 8 bytes of data

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host
\ull

-
ACK=100

SendBase=100
SendBase=120

SendBase=120

SendBase=92 ~—

Host A Host B
e o
Seq=92, 8 bytes of data
\ \

Seq=100, 20 bytes of dat

ACK=100
ACK=120

—— timeout ——

premature timeout

\

send cumulative
ACK for 120

Transport Layer: 3-139

TCP: retransmission scenarios

Host A Host B
. / \

/

Seq=92, 8 bytes of data

Seq=100, 20 bytesgdz

ACK=100
X
ACK=120

/

A

Seq=120, 15 bytes of data

cumulative ACK covers
for earlier lost ACK

Transport Layer: 3-140

TCP fast retransmit

) Host A Host B
— TCP fast retransmit V./ \‘y
. . _ % 2
if sender receives 3 additional -
(g 3 x= Seq=
ACKs for same data (“triple 99=92, 8 bytes of g

Seg=
duplicate ACKs”), resend unACKed %%
X

segment with smallest seq #
oA &

= |ikely that unACKed segment lost,

so don’t wait for timeout >
% poxAE
M]] 51\00
' JReceipt of three duplicate ACKs pOKS

indicates 3 segments received Seq=100, 20 bytes of data
after a missing segment — lost
segment is likely. So retransmit!

Transport Layer: 3-141

	Default Section
	Slide 1

	Section 3
	Slide 77: Stop-and-wait operation
	Slide 78: Packet transmission takes time
	Slide 79: Packet transmission takes time
	Slide 80: Packet transmission takes time
	Slide 81: Packet transmission takes time
	Slide 82: Packet transmission takes time
	Slide 83: Packet transmission takes time
	Slide 84: Packet transmission takes time
	Slide 85: Packet transmission takes time
	Slide 86: Stop-and-wait operation
	Slide 87: Solution: Pipelined protocols
	Slide 88: Solution: Pipelined protocols
	Slide 89: Solution: Pipelined protocols
	Slide 90: Solution: Pipelined protocols
	Slide 91: Solution: Pipelined protocols
	Slide 92: Pipelining: design question: when to stop
	Slide 93: Pipelining: design question: when to stop
	Slide 94: Sliding Window
	Slide 95: Sliding Window
	Slide 96: Sliding Window
	Slide 97: Sliding Window
	Slide 98: Sliding Window
	Slide 99: Sliding Window + cumulative ACK
	Slide 100: Sliding Window + cumulative ACK
	Slide 101: Sliding Window + cumulative ACK
	Slide 102: Sliding Window + cumulative ACK
	Slide 103: Sliding Window + cumulative ACK: out-of-order
	Slide 104: Sliding Window + cumulative ACK: out-of-order
	Slide 105: Sliding Window + cumulative ACK: out-of-order
	Slide 106: Sliding Window + cumulative ACK: out-of-order
	Slide 107: Sliding Window + cumulative ACK: out-of-order
	Slide 108: Go-Back-N: sender
	Slide 109: Go-Back-N: receiver
	Slide 110: Go-Back-N in action
	Slide 111: Sliding Window + selective repeat
	Slide 112: Sliding Window + selective repeat
	Slide 113: Sliding Window + selective repeat
	Slide 114: Sliding Window + selective repeat
	Slide 115: Sliding Window + selective repeat: out-of-order
	Slide 116: Sliding Window + selective repeat: out-of-order
	Slide 117: Sliding Window + selective repeat: out-of-order
	Slide 118: Sliding Window + selective repeat: out-of-order
	Slide 119: Sliding Window + selective repeat: out-of-order
	Slide 120: Sliding Window + selective repeat: out-of-order
	Slide 121: Sliding Window + selective repeat: out-of-order
	Slide 122: Sliding Window + selective repeat: out-of-order
	Slide 123: Sliding Window + selective repeat: out-of-order
	Slide 124: Sliding Window + selective repeat
	Slide 125: Selective repeat: the approach
	Slide 126: Selective repeat: sender, receiver windows
	Slide 128: Selective Repeat in action
	Slide 129: Chapter 3: roadmap
	Slide 130: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Slide 131: TCP segment structure
	Slide 132: TCP sequence numbers, ACKs
	Slide 133: TCP sequence numbers, ACKs
	Slide 134: TCP round trip time, timeout
	Slide 135: TCP round trip time, timeout
	Slide 136: TCP round trip time, timeout
	Slide 137: TCP Sender (simplified)
	Slide 138: TCP Receiver: ACK generation [RFC 5681]
	Slide 139: TCP: retransmission scenarios
	Slide 140: TCP: retransmission scenarios
	Slide 141: TCP fast retransmit

