
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

Transport Layer: 3-1

Yaxiong Xie

Department of Computer Science and Engineering

University at Buffalo, SUNY

Adapted from the slides of the book’s authors

Stop-and-wait operation

sending
process

data

receiving
process

data

unreliable channel

application

transport

Transport Layer: 3-77

1 1

ACKACK

Stop-and-wait

Packet transmission takes time

Transport Layer: 3-78

Source Router

Packet transmission takes time

Transport Layer: 3-79

Source Router

Packet transmission takes time

Transport Layer: 3-80

Source Router

Packet transmission takes time

Transport Layer: 3-81

Source Router

Packet transmission takes time

Transport Layer: 3-82

Source Router

Packet transmission takes time

Transport Layer: 3-83

Source Router

Packet transmission takes time

Transport Layer: 3-84

Source Router

Packet transmission takes time

Transport Layer: 3-85

Source Router

ACK

Packet

Stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

Transport Layer: 3-86

Solution: Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets

Transport Layer: 3-87

Source Router

Solution: Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets

Transport Layer: 3-88

Source Router

Solution: Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets

Transport Layer: 3-89

Source Router

Solution: Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets

Transport Layer: 3-90

Source Router

Solution: Pipelined protocols
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets

Transport Layer: 3-91

Source Router

Pipelining: design question: when to stop

sending
process

data

receiving
process

data

unreliable channel

application

transport

Transport Layer: 3-92

1 2 3 4 5 6 7 8

Should we keep sending as many packets
as possible?

……

Pipelining: design question: when to stop

sending
process

data

receiving
process

data

unreliable channel

application

transport

Transport Layer: 3-93

1 2 3 4 5 6 7 8 ……

Source Router

We should stop when the network is full!

Sliding Window

Transport Layer: 3-94

sent and ACKed Not yet sent

…
sent, not yet ACKed

Window Size N

…

Sliding Window

Transport Layer: 3-95

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

ACK

Sliding Window

Transport Layer: 3-96

sent and ACKed Not yet sent

… …
sent, not yet ACKed

ACK

Window Size N

Send one more
packet

Sliding Window

Transport Layer: 3-97

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

ACK

Sliding Window

Transport Layer: 3-98

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

ACK

▪ Timer for oldest in-flight packet

▪ Timeout(n): retransmit packet n and all higher seq # packets in window

Timeout： retransmission

Sliding Window + cumulative ACK

Transport Layer: 3-99

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Sliding Window + cumulative ACK

Transport Layer: 3-100

sent and ACKed Not yet sent

sent, not yet ACKed

Window Size N

… …

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Sliding Window + cumulative ACK

Transport Layer: 3-101

sent and ACKed Not yet sent

sent, not yet ACKed

Window Size N

… …

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Sliding Window + cumulative ACK

Transport Layer: 3-102

sent and ACKed Not yet sent

sent, not yet ACKed

Window Size N

… …

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

Sliding Window + cumulative ACK: out-of-order

Transport Layer: 3-103

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Two Question:
1. do we need to send ACK when we receive an out-of-order

packet? If yes, what kind of ACK?

Sliding Window + cumulative ACK: out-of-order

Transport Layer: 3-104

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Two Question:
1. do we need to send ACK when we receive an out-of-order

packet? If yes, what kind of ACK?
2. how shall we deal with the out-of-order packets we received?

Sliding Window + cumulative ACK: out-of-order

Transport Layer: 3-105

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Two Question:
1. do we need to send ACK when we receive an out-of-order

packet? If yes, what kind of ACK?
2. how shall we deal with the out-of-order packets we received?

Sliding Window + cumulative ACK: out-of-order

Transport Layer: 3-106

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Retransmit

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #

• may generate duplicate ACKs

Sliding Window + cumulative ACK: out-of-order

Transport Layer: 3-107

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Retransmit

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision

• re-ACK pkt with highest in-order seq #

Go-Back-N: sender
▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window
Transport Layer: 3-108

Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #

• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Transport Layer: 3-109

Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Transport Layer: 3-110

Sliding Window + selective repeat

Transport Layer: 3-111

Sliding Window + selective repeat

Transport Layer: 3-112

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Sliding Window + selective repeat

Transport Layer: 3-113

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Sliding Window + selective repeat

Transport Layer: 3-114

sent and ACKed Not yet sent

sent, not yet ACKed

Window Size N

… …

Sender

Receiver

received and ACKed Not yet received

received, not yet ACKed

… …

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-115

sent and ACKed Not yet sent

sent, not yet ACKed

Window Size N

… …

Sender

Receiver

received and ACKed Not yet received

received, not yet ACKed

… …

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-116

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-117

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-118

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-119

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-120

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-121

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-122

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat: out-of-order

Transport Layer: 3-123

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

Sliding Window + selective repeat

Transport Layer: 3-124

sent and ACKed Not yet sent

… …
sent, not yet ACKed

Window Size N

Sender

Receiver

received and ACKed Not yet received

… …
received, not yet ACKed

…

▪ Maintains (conceptually) a timer for each unACKed pkt
• timeout: retransmits single unACKed packet associated with timeout

Selective repeat: the approach

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window

Transport Layer: 3-125

Selective repeat: sender, receiver windows

Transport Layer: 3-126

Selective Repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3

record ack3 arrived

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Transport Layer: 3-128

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-129

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

▪ cumulative ACKs

▪ pipelining:
• TCP congestion and flow control

set window size

▪ connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

▪ flow controlled:
• sender will not overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:
• no “message boundaries"

▪ full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-130

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport Layer: 3-131

TCP sequence numbers, ACKs

Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Acknowledgements:

• seq # of next byte expected
from other side

• cumulative ACK

Q: how receiver handles out-of-
order segments

• A: TCP spec doesn’t say, - up
to implementor

Transport Layer: 3-132

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-133

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

Transport Layer: 3-134

TCP round trip time, timeout
EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value:  = 0.125
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)
Transport Layer: 3-135

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-136

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream number
of first data byte in segment

▪ start timer if not already
running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• start timer if there are still
unACKed segments

Transport Layer: 3-137

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-138

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-139

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-140

TCP fast retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-141

	Default Section
	Slide 1

	Section 3
	Slide 77: Stop-and-wait operation
	Slide 78: Packet transmission takes time
	Slide 79: Packet transmission takes time
	Slide 80: Packet transmission takes time
	Slide 81: Packet transmission takes time
	Slide 82: Packet transmission takes time
	Slide 83: Packet transmission takes time
	Slide 84: Packet transmission takes time
	Slide 85: Packet transmission takes time
	Slide 86: Stop-and-wait operation
	Slide 87: Solution: Pipelined protocols
	Slide 88: Solution: Pipelined protocols
	Slide 89: Solution: Pipelined protocols
	Slide 90: Solution: Pipelined protocols
	Slide 91: Solution: Pipelined protocols
	Slide 92: Pipelining: design question: when to stop
	Slide 93: Pipelining: design question: when to stop
	Slide 94: Sliding Window
	Slide 95: Sliding Window
	Slide 96: Sliding Window
	Slide 97: Sliding Window
	Slide 98: Sliding Window
	Slide 99: Sliding Window + cumulative ACK
	Slide 100: Sliding Window + cumulative ACK
	Slide 101: Sliding Window + cumulative ACK
	Slide 102: Sliding Window + cumulative ACK
	Slide 103: Sliding Window + cumulative ACK: out-of-order
	Slide 104: Sliding Window + cumulative ACK: out-of-order
	Slide 105: Sliding Window + cumulative ACK: out-of-order
	Slide 106: Sliding Window + cumulative ACK: out-of-order
	Slide 107: Sliding Window + cumulative ACK: out-of-order
	Slide 108: Go-Back-N: sender
	Slide 109: Go-Back-N: receiver
	Slide 110: Go-Back-N in action
	Slide 111: Sliding Window + selective repeat
	Slide 112: Sliding Window + selective repeat
	Slide 113: Sliding Window + selective repeat
	Slide 114: Sliding Window + selective repeat
	Slide 115: Sliding Window + selective repeat: out-of-order
	Slide 116: Sliding Window + selective repeat: out-of-order
	Slide 117: Sliding Window + selective repeat: out-of-order
	Slide 118: Sliding Window + selective repeat: out-of-order
	Slide 119: Sliding Window + selective repeat: out-of-order
	Slide 120: Sliding Window + selective repeat: out-of-order
	Slide 121: Sliding Window + selective repeat: out-of-order
	Slide 122: Sliding Window + selective repeat: out-of-order
	Slide 123: Sliding Window + selective repeat: out-of-order
	Slide 124: Sliding Window + selective repeat
	Slide 125: Selective repeat: the approach
	Slide 126: Selective repeat: sender, receiver windows
	Slide 128: Selective Repeat in action
	Slide 129: Chapter 3: roadmap
	Slide 130: TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	Slide 131: TCP segment structure
	Slide 132: TCP sequence numbers, ACKs
	Slide 133: TCP sequence numbers, ACKs
	Slide 134: TCP round trip time, timeout
	Slide 135: TCP round trip time, timeout
	Slide 136: TCP round trip time, timeout
	Slide 137: TCP Sender (simplified)
	Slide 138: TCP Receiver: ACK generation [RFC 5681]
	Slide 139: TCP: retransmission scenarios
	Slide 140: TCP: retransmission scenarios
	Slide 141: TCP fast retransmit

