Chapter 3 s
Transport Layer '

Yaxiong Xie

Department of Computer Science and Engineering
University at Buffalo, SUNY

NETWORKING

) A TOP-DOWN APPROACH -

Eighth Edition

T Ll ‘g‘f“‘

—

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Adapted from the slides of the book’s authors Pearson, 2020

Transport Layer: 3-1

Chapter 3: roadmap

" Principles of reliable data transfer

Transport Layer: 3-33

Principles of reliable data transfer

N —&

%¢sending receiving B
process process
application data py

reliable service abstraction

Transport Layer: 3-34

Principles of reliable data transfer

W _
= sending
process
application l

transport

data

receiving Bl
process

sender-side of
reliable data
transfer protocol

receiver-side
of reliable data
transfer protocol

transport
network

reliable service implementation

Transport Layer: 3-35

Principles of reliable data transfer

™ ;
= sending
process
application l

data

transport

receiving Bl
process

sender-side of
reliable data
transfer protocol

receiver-side
of reliable data
transfer protocol

Complexity of reliable data
transfer protocol will depend
(strongly) on characteristics of

/
transport
. k
unreliable channel (lose, nemwer 4_]

corrupt, reorder data?)

reliable service implementation

Transport Layer: 3-36

Principles of reliable data transfer

Sender, receiver do not know

the “state” of each other, e.g.,

was a message received?

" unless communicated via a
message

= sending
process
application
transport l

sender-side of
reliable data
transfer protocol

transport

network

reliable service implementation

Transport Layer: 3-37

Reliable data transfer protocol (rdt): interfaces

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

eceiving il

r [
process

data

udt send ()

sender-side
implementation of
rdt reliable data
transfer protocol

data

packet

e

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

receiver-side
implementation of
rdt reliable data
transfer protoco

deliver_data(): called by rdt
to deliver data to upper layer

T(jeliver_data()

\/

Bi-directional communication over

unreliable channel

I rdt_rcv ()

rdt_rcv(): called when packet
arrives on receiver side of
channel

Transport Layer: 3-38

Reliable data transfer: getting started
We will:

" incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

= consider only unidirectional data transfer
* but control info will flow in both directions!

Data control

CDN Server control

Transport Layer: 3-39

Reliable data transfer: Protocol States

" use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

S No state
transition

|

state: when in this “state”
next state uniquely
determined by next

event

Transport Layer: 3-40

Channel model: Reliable Channel

w 1
- sending receiving Bl
process process
application data py

reliable service abstraction

" underlying channel perfectly reliable
* no bit errors
* no loss of packets

Transport Layer: 3-41

rdt1.0: reliable transfer over a reliable channel

" separate FSMs for sender, receiver:
* sender sends data into underlying channel
* receiver reads data from underlying channel

“/Wait for rdt_send(data) _ "%/ Wait for rdt_rcv(packet)
sender caléfrom packet = make_pkt(data) recelver | call from extract (packet,data)
above udt_send(packet) below deliver_data(data)

Transport Layer: 3-42

rdt1.0: reliable transfer over a reliable channel

" separate FSMs for sender, receiver:
* sender sends data into underlying channel
* receiver reads data from underlying channel

“/Wait for rdt_send(data) _ “%Wait for rdt_rcv(packet)
sender |callfrom packet = make_pkt(data) recelver | call from extract (packet,data)
above udt_send(packet) below deliver_data(data)

Transport Layer: 3-43

Reliable data transfer protocol (rdt): interfaces

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

eceiving il

r [
process

data

udt send ()

sender-side
implementation of
rdt reliable data
transfer protocol

data

packet

e

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

receiver-side
implementation of
rdt reliable data
transfer protoco

deliver_data(): called by rdt
to deliver data to upper layer

T(jeliver_data()

\/

Bi-directional communication over

unreliable channel

I rdt_rcv ()

rdt_rcv(): called when packet
arrives on receiver side of
channel

Transport Layer: 3-44

Channel model: channel with bit errors

v |
& sending receiving ‘!
process process
application data py

] D

t1

Bit errors

" underlying channel may flip bits in packet
* checksum (e.g., Internet checksum) to detect bit errors

Transport Layer: 3-45

rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
 checksum to detect bit errors

" the question: how to recover from errors?

* acknowledgements (ACKs): receiver explicitly tells sender that pkt
received OK

* negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

e sender retransmits pkt on receipt of NAK

— stop and wait
sender sends one packet, then waits for receiver response

Transport Layer: 3-46

rdt2.0: channel with bit errors

8
receiving
process

data

-~ sending
~ process

application
transport

— > H
stop and wait errors
NAK NAK
— - @

Retransmission

Transport Layer: 3-47

rdt2.0: FSM specifications

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)

A

Transport Layer: 3-48

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Note: “state” of receiver (did the receiver get my

message correctly?) isn’t known to sender unless

somehow communicated from receiver to sender
= that’s why we need a protocol!

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt

~
~

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

dt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt)
udt_send(NAK)

sender

call from
above

< rdt_rcv(rcvpkt) && isACK(rcvpkt)

Wait for
call from
below

A receiver

rdt_rcv(rcvpkt) &&’notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer: 3-50

rdt2.0: corrupted packet scenario

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt)

~

d S is_NAK(rcvp \
sender { cai from udt_send(sndpkt) rdt_rcv(rovpky && corrupt(revpk)
above -
end(NAK
rdt_rev(revpkt) && isACK(revpkt) RN

Wait for
call from
below

A receiver

>
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer: 3-51

rdt2.0: no errors VS. corrupted packets

8
receiving
process

sending

process
application data py
— > D _— > ﬁ
Bit errors
O -« 3 & <]
ACK ACK NAK NAK
) » [

Retransmission

Transport Layer: 3-52

rdt2.0 has a fatal flaw!

what happens if ACK/NAK
corrupted?

= sender doesn’t know what
happened at receiver!

= can’t just retransmit: possible
duplicate

Transport Layer: 3-53

rdt2.0: corrupted ACK

-, sending
~ process

receiving
process

data

application
transport

] > @

’) (1) -«) Duplications!
® ACK ACK
) > OO

Retransmission

Transport Layer: 3-54

rdt2.0 has a fatal flaw!

what happens if ACK/NAK handling duplicates:
corrupted? " sender retransmits current pkt
= sender doesn’t know what if ACK/NAK corrupted
happened at receiver! = sender adds sequence number
= can’t just retransmit: possible to each pkt
duplicate = receiver discards (doesn’t

deliver up) duplicate pkt

— stop and wait

sender sends one packet, then
waits for receiver response

Transport Layer: 3-55

rdt2.0: corrupted ACK

sending

receiving
process

process
application data
>
’) (1) -«) Duplications!
® ACK ACK
>

Retransmission

Transport Layer: 3-56

rdt2.1: summary

sender:
" seq # added to pkt

" two seq. #s (0,1) will suffice.
Why?

= must check if received ACK/NAK
corrupted

= twice as many states

e state must “remember” whether
“expected” pkt should have seq #
of Oor1

receiver:

" must check if received packet
is duplicate

e state indicates whetherOor 1 is
expected pkt seq #

= note: receiver can not know if
its last ACK/NAK received OK
at sender

Transport Layer: 3-57

rdt2.1: sender, handling garbled ACK/NAKs

rdt_send(data)

sndpkt = make_ pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
Wait for isNAK(rcvpkt))

ACK
NAK %r udt_send(sndpkt)

Wait for
call 0 from
above

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt) && rdt_rcv(revpkt)

&& notcorrupt(rcvpkt)

SACK(revPY) && iISACK(rcvpkt)
A A
Wait for Wait for
rdt_rcv(rcvpkt)
&& (corrupt(rcvpkt) ||
iSNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer: 3-58

rdt2.1: receiver, handling garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
\ udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(revpki) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum) \ sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) udt_send(sndpkt)
Q Wait fol -

rdt_rcv(rcvpkt) && rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && < not corrupt(rcvpkt) &&
has_seql(rcvpkt)

has seqO(rcvpkt)
sgdpkt :dmageﬁpkt(ACK’ chksum) sndpkt = make_pkt(ACK, chksum)
udt_send(sn
- (sndpia) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)

&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer: 3-59

rdt2.2: a NAK-free protocol

= same functionality as rdt2.1, using ACKs only

= instead of NAK, receiver sends ACK for last pkt received OK
* receiver must explicitly include seq # of pkt being ACKed

= duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free

Transport Layer: 3-60

rdt2.0: NAK-free

o, sending receiving ¥
process process

data

application
transport

ACK ACK

a H
v
a H

ACK AC

~

Transport Layer: 3-61

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
.. —— — rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

...................... o "rox) ACKIcuDIL)
................................... above 0 udt_send(sndpkt)
__ sender FSM

... fragment rdt_rcv(rcvpkt)
..................................... && notcorrupt(rcvpkt)
fdt_rev(revpkt) &8 e && ISACK(revpkt.0)

Goruptevpk) | o A
orupitek) Il receiver SM

pT—— fragment T

— — T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) T
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make pkt(ACK1, chksum)
udt_send(sndpkt)

Transport Layer: 3-62

rdt3.0: channels with errors and loss

‘“v sending
process
application

8
receiving
process

data

transport
<
0
Lost <

> Errors
> Lost
.

Transport Layer: 3-63

rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)

* checksum, sequence #s, ACKs, retransmissions will be of help ...

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?

Transport Layer: 3-64

rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

= retransmits if no ACK received in this time
= if pkt (or ACK) just delayed (not lost):

e retransmission will be duplicate, but seq #s already handles this!

* receiver must specify seq # of packet being ACKed

= use countdown timer to interrupt after “reasonable” amount
of time

Transport Layer: 3-65

rdt3.0: channels with errors and loss

sending

application

process

transport

8
receiving
process

data

> Lost

Transport Layer: 3-66

rdt3.0 sender

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)

\ udt_sendisaetd
start_timer
——

\

Wait for Wait
call 0 from for
above ACKO
rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& iIsACK(rcvpkt,1) && notcorrupt(rcvpkt)
stop_timer && isACK(rcvpkt,0)
op_timer

Wait for

call 1 from
above

di_send(data
sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer

Transport Layer: 3-67

rdt3.0 sender

\
\

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& ISACK(rcvpkt,1)

stop_timer

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

rdt_send(data)

rdt_rcv(rcvpkt) &&

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

Walit for
call 0 from
above

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))

start_timer A
—
timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer: 3-68

rdt3.0 in action

sender recelver
send pkt0 ktO
\\ rcv pkto
ack send ackO
rcv ackO
send pktl \K
rcv pktl
ack send ack1l
rcv ackl
send pkt0 \!to\‘
rcv pkt0
ack send ackO

(a) no loss

sender recelver
send pktO ktO
\\ Fcv pkto
ac send ackO
00
sen t
p \p\“
loss
timeout-
resend pktl \Ml\‘
rcv pktl
ack send ackl
rcv ackl
send pkt0 ktO

fif

rcv pktO
ack send ackO

(b) packet loss

Transport Layer: 3-69

rdt3.0 in action

sender receiver
send pkt0 ktO
\\ rcv pktO
ack send ackO
rcv ackO
send pktl._ \Ml\‘
rcv pktl
yockl—" send ack1
loss
‘ t/meout_
resend pktl \K rev pktl
o Sendackl
rcv ackl
send pkto \w\‘
rcv pktO
ack send ackO

(c) ACK loss

sender receiver

send pkt0 —__
pk0 ~, rcv pkt0
_—send ackO0

rcv ack) — K0
send pktl_~—~ 1

~—~ rcv pktl
~ send ackl

ackl
‘ t/meout_

resend pktl
° Pktl __ rcv pktl

rcv ackl (detect duplicate)
send pktO pktO send ackl
rev ackl « 3K eV pkt0
(ignore) ack0 send ack0
~—
pktl —

(d) premature timeout/ delayed ACK

Transport Layer: 3-70

rdt3.0: Efficiency

-, sending receiving
_ process process

data

application
transport

] > @
Stop-and-wait 1

& <
ACK ACK

Transport Layer: 3-71

rdt3.0: Efficiency

=l . utilization — fraction of time sender busy sending

sender*

= example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

e time to transmit packet into channel:

D = L = iOQO bits = 8 microsecs
trans — R 107 bits/sec

Transport Layer: 3-72

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0
t

[first packet bit arrives
RTT last packet bit arrives, send ACK

ACK arrives, send next|

packet, t=RTT + L/ R_\ ----------------------
\

Transport Layer: 3-73

rdt3.0: stop-and-wait operation

sender receiver

L/R

Usender= RTT + |_/ R ‘ \
.008 RTT -

000027 _\\ ----------------------

= rdt 3.0 protocol performance stinks!
= Protocol limits performance of underlying infrastructure (channel)

Transport Layer: 3-74

rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pcllcke’r—p

(a) a stop-and-wait protocol in operation

Transport Layer: 3-75

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 - ---- -
last bit transmitted, t=L /R ¢

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2"d packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next,
packet,t=RTT+L/R

................ 3-packet pipelining increases
"""""""""""" utilization by a factor of 3!

3L/R .0024 l
U o = j—
sender ————T 30.008 0.00081

Transport Layer: 3-76

	Default Section
	Slide 1

	Section 2
	Slide 33: Chapter 3: roadmap
	Slide 34: Principles of reliable data transfer
	Slide 35: Principles of reliable data transfer
	Slide 36: Principles of reliable data transfer
	Slide 37: Principles of reliable data transfer
	Slide 38: Reliable data transfer protocol (rdt): interfaces
	Slide 39: Reliable data transfer: getting started
	Slide 40: Reliable data transfer: Protocol States
	Slide 41: Channel model: Reliable Channel
	Slide 42: rdt1.0: reliable transfer over a reliable channel
	Slide 43: rdt1.0: reliable transfer over a reliable channel
	Slide 44: Reliable data transfer protocol (rdt): interfaces
	Slide 45: Channel model: channel with bit errors
	Slide 46: rdt2.0: channel with bit errors
	Slide 47: rdt2.0: channel with bit errors
	Slide 48: rdt2.0: FSM specifications
	Slide 49: rdt2.0: FSM specification
	Slide 50: rdt2.0: operation with no errors
	Slide 51: rdt2.0: corrupted packet scenario
	Slide 52: rdt2.0: no errors VS. corrupted packets
	Slide 53: rdt2.0 has a fatal flaw!
	Slide 54: rdt2.0: corrupted ACK
	Slide 55: rdt2.0 has a fatal flaw!
	Slide 56: rdt2.0: corrupted ACK
	Slide 57: rdt2.1: summary
	Slide 58: rdt2.1: sender, handling garbled ACK/NAKs
	Slide 59: rdt2.1: receiver, handling garbled ACK/NAKs
	Slide 60: rdt2.2: a NAK-free protocol
	Slide 61: rdt2.0: NAK-free
	Slide 62: rdt2.2: sender, receiver fragments
	Slide 63: rdt3.0: channels with errors and loss
	Slide 64: rdt3.0: channels with errors and loss
	Slide 65: rdt3.0: channels with errors and loss
	Slide 66: rdt3.0: channels with errors and loss
	Slide 67: rdt3.0 sender
	Slide 68: rdt3.0 sender
	Slide 69: rdt3.0 in action
	Slide 70: rdt3.0 in action
	Slide 71: rdt3.0: Efficiency
	Slide 72: rdt3.0: Efficiency
	Slide 73: rdt3.0: stop-and-wait operation
	Slide 74: rdt3.0: stop-and-wait operation
	Slide 75: rdt3.0: pipelined protocols operation
	Slide 76: Pipelining: increased utilization

