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Chapter 3: roadmap

" Principles of reliable data transfer
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Principles of reliable data transfer
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Principles of reliable data transfer
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Principles of reliable data transfer
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Reliable data transfer protocol (rdt): interfaces
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Reliable data transfer: getting started
We will:

" incrementally develop sender, receiver sides of reliable data transfer
protocol (rdt)

= consider only unidirectional data transfer
* but control info will flow in both directions!

Data control

CDN Server control
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Reliable data transfer: Protocol States

" use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

S No state
transition
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state: when in this “state”
next state uniquely
determined by next

event
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Channel model: Reliable Channel
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" underlying channel perfectly reliable
* no bit errors
* no loss of packets
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rdt1.0: reliable transfer over a reliable channel

" separate FSMs for sender, receiver:
* sender sends data into underlying channel
* receiver reads data from underlying channel

“/Wait for rdt_send(data) _ "%/ Wait for rdt_rcv(packet)
sender caléfrom packet = make_pkt(data) recelver | call from extract (packet,data)
above udt_send(packet) below deliver_data(data)
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rdt1.0: reliable transfer over a reliable channel
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Reliable data transfer protocol (rdt): interfaces
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Channel model: channel with bit errors
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Bit errors

" underlying channel may flip bits in packet
* checksum (e.g., Internet checksum) to detect bit errors
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rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
 checksum to detect bit errors

" the question: how to recover from errors?

* acknowledgements (ACKs): receiver explicitly tells sender that pkt
received OK

* negative acknowledgements (NAKs): receiver explicitly tells sender
that pkt had errors

e sender retransmits pkt on receipt of NAK

— stop and wait
sender sends one packet, then waits for receiver response
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rdt2.0: channel with bit errors
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rdt2.0: FSM specifications

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)

A
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rdt2.0: FSM specification

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

udt_send(sndpkt)

Wait for
call from
above

sender

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Note: “state” of receiver (did the receiver get my

message correctly?) isn’t known to sender unless

somehow communicated from receiver to sender
= that’s why we need a protocol!




rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt

~
~

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

dt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt(rcvpkt)
udt_send(NAK)

sender

call from
above

< rdt_rcv(rcvpkt) && isACK(rcvpkt)

Wait for
call from
below

A receiver

rdt_rcv(rcvpkt) &&’notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0: corrupted packet scenario

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt)

~

d S is_NAK(rcvp \
sender  { cai from udt_send(sndpkt) rdt_rcv(rovpky && corrupt(revpk)
above -
end(NAK
rdt_rev(revpkt) && isACK(revpkt) RN

Wait for
call from
below

A receiver

>
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0: no errors VS. corrupted packets
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rdt2.0 has a fatal flaw!

what happens if ACK/NAK
corrupted?

= sender doesn’t know what
happened at receiver!

= can’t just retransmit: possible
duplicate
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rdt2.0: corrupted ACK
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rdt2.0 has a fatal flaw!

what happens if ACK/NAK handling duplicates:
corrupted? " sender retransmits current pkt
= sender doesn’t know what if ACK/NAK corrupted
happened at receiver! = sender adds sequence number
= can’t just retransmit: possible to each pkt
duplicate = receiver discards (doesn’t

deliver up) duplicate pkt

— stop and wait

sender sends one packet, then
waits for receiver response
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rdt2.0: corrupted ACK
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rdt2.1: summary

sender:
" seq # added to pkt

" two seq. #s (0,1) will suffice.
Why?

= must check if received ACK/NAK
corrupted

= twice as many states

e state must “remember” whether
“expected” pkt should have seq #
of Oor1

receiver:

" must check if received packet
is duplicate

e state indicates whetherOor 1 is
expected pkt seq #

= note: receiver can not know if
its last ACK/NAK received OK
at sender
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rdt2.1: sender, handling garbled ACK/NAKs

rdt_send(data)

sndpkt = make_ pkt(0, data, checksum)
udt_send(sndpkt) rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
Wait for isNAK(rcvpkt) )

ACK
NAK %r udt_send(sndpkt)

Wait for
call 0 from
above

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt) && rdt_rcv(revpkt)

&& notcorrupt(rcvpkt)

SACK(revPY) && iISACK(rcvpkt)
A A
Wait for Wait for
rdt_rcv(rcvpkt)
&& (corrupt(rcvpkt) ||
iSNAK(rcvpkt) ) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
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rdt2.1: receiver, handling garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\  sndpkt = make_pkt(ACK, chksum)
\ udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(revpki) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum) \ sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt) udt_send(sndpkt)
Q Wait fol -

rdt_rcv(rcvpkt) && rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && < not corrupt(rcvpkt) &&
has_seql(rcvpkt)

has seqO(rcvpkt)
sgdpkt :dmageﬁpkt(ACK’ chksum) sndpkt = make_pkt(ACK, chksum)
udt_send(sn
- (sndpia) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)

&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)
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rdt2.2: a NAK-free protocol

= same functionality as rdt2.1, using ACKs only

= instead of NAK, receiver sends ACK for last pkt received OK
* receiver must explicitly include seq # of pkt being ACKed

= duplicate ACK at sender results in same action as NAK:
retransmit current pkt

As we will see, TCP uses this approach to be NAK-free
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rdt2.0: NAK-free
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rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
.. —— — rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||

...................... o "rox ) ACKIcuDIL)
................................... above 0 udt_send(sndpkt)
______________________________________________ sender FSM

............................................... fragment rdt_rcv(rcvpkt)
..................................... && notcorrupt(rcvpkt)
fdt_rev(revpkt) &8 e && ISACK(revpkt.0)

Goruptevpk) | o A
orupitek) Il receiver SM

pT—— fragment T

— — T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) T
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make pkt(ACK1, chksum)
udt_send(sndpkt)
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rdt3.0: channels with errors and loss
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rdt3.0: channels with errors and loss

New channel assumption: underlying channel can also lose
packets (data, ACKs)

* checksum, sequence #s, ACKs, retransmissions will be of help ...

but not quite enough

Q: How do humans handle lost sender-to-
receiver words in conversation?
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rdt3.0: channels with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

= retransmits if no ACK received in this time
= if pkt (or ACK) just delayed (not lost):

e retransmission will be duplicate, but seq #s already handles this!

* receiver must specify seq # of packet being ACKed

= use countdown timer to interrupt after “reasonable” amount
of time
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rdt3.0: channels with errors and loss
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rdt3.0 sender

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)

\  udt_sendisaetd
start_timer
——

\

Wait for Wait
call 0 from for
above ACKO
rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& iIsACK(rcvpkt,1) && notcorrupt(rcvpkt)
stop_timer && isACK(rcvpkt,0)
op_timer

Wait for

call 1 from
above

di_send(data
sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
start_timer
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rdt3.0 sender

\
\

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& ISACK(rcvpkt,1)

stop_timer

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISACK(rcvpkt,0) )

A

rdt_send(data)

rdt_rcv(rcvpkt) &&

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

Walit for
call 0 from
above

( corrupt(rcvpkt) ||
ISACK(rcvpkt,1) )

start_timer A
—
timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer
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rdt3.0 in action

sender recelver
send pkt0 ktO
\\ rcv pkto
ack send ackO
rcv ackO
send pktl \K
rcv pktl
ack send ack1l
rcv ackl
send pkt0 \!to\‘
rcv pkt0
ack send ackO

(a) no loss

sender recelver
send pktO ktO
\\ Fcv pkto
ac send ackO
00
sen t
p \p\“
loss
timeout-
resend pktl \Ml\‘
rcv pktl
ack send ackl
rcv ackl
send pkt0 ktO

fif

rcv pktO
ack send ackO

(b) packet loss
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rdt3.0 in action

sender receiver
send pkt0 ktO
\\ rcv pktO
ack send ackO
rcv ackO
send pktl._ \Ml\‘
rcv pktl
yockl—" send ack1
loss
‘ t/meout_
resend pktl \K rev pktl
o Sendackl
rcv ackl
send pkto \w\‘
rcv pktO
ack send ackO

(c) ACK loss

sender receiver

send pkt0 —__
pk0 ~, rcv pkt0
_—send ackO0

rcv ack) — K0
send pktl_~—~ 1

~—~ rcv pktl
~ send ackl

ackl
‘ t/meout_

resend pktl
° Pktl __ rcv pktl

rcv ackl (detect duplicate)
send pktO pktO send ackl
rev ackl « 3K eV pkt0
(ignore) ack0 send ack0
~—
pktl —

(d) premature timeout/ delayed ACK
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rdt3.0: Efficiency
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rdt3.0: Efficiency

=l . utilization — fraction of time sender busy sending

sender*

= example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

e time to transmit packet into channel:

D = L = iOQO bits = 8 microsecs
trans — R 107 bits/sec

Transport Layer: 3-72



rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0
t

[first packet bit arrives
RTT last packet bit arrives, send ACK

ACK arrives, send next|

packet, t=RTT + L/ R_\ ----------------------
\
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rdt3.0: stop-and-wait operation

sender receiver

L/R

Usender= RTT + |_/ R ‘ \
.008 RTT -

000027 _\\ ----------------------

= rdt 3.0 protocol performance stinks!
= Protocol limits performance of underlying infrastructure (channel)
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rdt3.0: pipelined protocols operation

pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pcllcke’r—p

(a) a stop-and-wait protocol in operation
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Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 - ---- -
last bit transmitted, t=L /R ¢

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2"d packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next,
packet,t=RTT+L/R

................ 3-packet pipelining increases
"""""""""""" utilization by a factor of 3!

3L/R .0024 l
U o = j—
sender ————T 30.008 0.00081
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