Chapter 3 s
Transport Layer '

Yaxiong Xie

Department of Computer Science and Engineering
University at Buffalo, SUNY

NETWORKING

) A TOP-DOWN APPROACH -

Eighth Edition

T Ll ‘g‘f“‘

—

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Adapted from the slides of the book’s authors Pearson, 2020

Transport Layer: 3-1

Transport layer: overview

Our goal:
" understand principles = learn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport
* multiplexing, * TCP: connection-oriented reliable
demultiplexing transport
* reliable data transfer * TCP congestion control

* flow control
e congestion control

Transport Layer: 3-2

Transport layer: roadmap

" Transport-layer services

= Multiplexing and demultiplexing
= Connectionless transport: UDP

" Principles of reliable data transfer

= Connection-oriented transport: TCP
" Principles of congestion control
= TCP congestion control

= Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

" Providing service for upper layers
" L everaging service provided by lower layers
= Communicating using protocols

Source Destination
Upper Layer , Providing service Upper Layer Providing service

: : Protocol . .
Target Layer Leveraging service 4} Target Layer Leveraging service

Lower Layer Lower Layer

Transport Layer: 3-4

Transport vs. network layer services and protocols

I 4 I
Client/Host Server/Host
Application Layer | Y NETFLIX
wim & [| A ver| Yu®

TikTok Youtube TikTok Netflix

L Process 1 Process 2 Process 3 L server Server Server
1 1) 1 1 1

Socket 1 Socket 2 Socket 3 Socket 1 Socket 2 Socket 3

Transport layer

Network layer

Protocol
TCP/UDP

Transport layer

Network layer

" network layer:
communication
between hosts

" transport layer: communication

between processes

* relies on, enhances, network layer services

Transport Layer: 3-5

Two principal Internet transport protocols

transport

= TCP: Transmission Control Protocol
* reliable, in-order delivery |
e congestion control
* flow control
* connection setup
= UDP: User Datagram Protocol
* unreliable, unordered delivery
* no-frills extension of “best-effort” IP
= services not available:

e delay guarantees
* bandwidth guarantees

| data link
| physical

Transport Layer: 3-6

Chapter 3: roadmap

= Multiplexing and demultiplexing

Transport Layer: 3-7

Multiplexing/demultiplexing

. A
Client/Host Server/Host
wiff < B wi@® J El
L Process 1 Process 2 Process 3 y L Y::rt,uel?’e ;:ekr-:-/(:: I;I:rt\tle')r(
I t t t
Socket 1 Socket 2 Socket 3 Socket 1 Socket 2 Socket 3
Transport layer Transport layer
— multiplexing as sender: —— — demultiplexing as receiver: —
handle data from multiple use header info to deliver
sockets, add transport header received segments to correct
(later used for demultiplexing) socket

How demultiplexing works

= Fach network layer datagram
has source and destination IP

Source IP Destination IP
Source Port Destination Port

address t

J
|
= Each transport layer segment D@ Transport layer
has source and destination
port number

DO@ Network layer
" Host uses IP addresses & port , A ‘ y

numbers to direct segment to Source P Destination IP
appropriate socket

Transport Layer: 3-9

TCP VS UDP: connection VS connectionless

= UDP the socket are local and
independent

= TCP two sockets are linked
together

Socket 1 Socket 1
Transport layer Transport layer
UDP client UDP server
Socket 1 Socket 1
Transport layer Transport layer
TCP client TCP server

Transport Layer: 3-10

Connectionless demultiplexing 5/uop datagrams with same

dest. port #, but different

] source IP addresses and/or
= UDP the socket are local and independent source port numbers will be

= Demultiplexing based on destination port directed tosame socket at
receiving host
I

I Socket S | Socket Port: 8888 I

Socket 1 Socket 3
: Transport layer LAl S S SHk _
SDIEE Nl Transport layer LS L dEVI@ UDP client 3
UDP server

Dest Port: 8888 Dest Port: 8888
Dest IP: XX.XX.XX.XX Dest IP: XX.XX.XX.XX
Socket 2 Socket 4
UDP client 2 EEITi8 oJelgs Iayer Transport |ayer UDP client 4
Dest Port: 8888 Dest Port: 8888

Dest IP: xX.XX. XX. XX Dest IP: XX.XX. XX. XX
Transport Layer: 3-11

Connection-oriented demultiplexing

= TCP two sockets are linked together
" We need to ID the connection for demultiplexing

I Socket S1 Socket S3 Socket S2 I
Socket 1 ‘ ‘ ‘ Socket 2

, Transport layer TCP server .
UDP client 1 QI N JelgdE\/Tg LCHE L1 dEVIdm UDP client 2

Socket 3

LU S JEWVTEm UDP client 3

Transport Layer: 3-12

Src IP, Src Port, Dest IP, Dest Port

Connection-oriented demultiplexing

I 4
Client/Host Client IP Server/Host
wif < BN Ywl® -
L Process 1 Process 2 Process 3 y Server IP L Y::rt,uel?’e ;:ekr-:-/(:: I;I:rt\tle')r(
5333 7128 6388 | 81 ¢t 82 % 83 %
Socket 1 Socket 2 Socket 3 Socket 1 Socket 2 Socket 3

v I
- Transpolft layer - Transpor} layer

ClientIP 6888 ServerlIP 83
ClientIP 7128 ServerlIP 82

ClientIP 5333 ServerlIP 81

4-tuple matters here!

Connection-oriented demultiplexing

= TCP socket identified by
4-tuple:
e source IP address
* source port number
e dest IP address
e dest port number

" demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

" server may support many
simultaneous TCP sockets:

e each socket identified by its
own 4-tuple

e each socket associated with
a different connecting client

Transport Layer: 3-14

Summary

= Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

® TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-15

Chapter 3: roadmap

= Connectionless transport: UDP

Transport Layer: 3-16

UDP: User Datagram Protocol

= “no frills,” “bare bones”
Internet transport protocol

= “best effort” service, UDP
segments may be:

* |ost
* delivered out-of-order to app

m connectionless:

* no handshaking between UDP
sender, receiver

* each UDP segment handled
independently of others

- Why is there a UDP?

NO connection

establishment (which can

add RTT delay)

simple: no connection state

at sender, receiver
small header size
no congestion control

= UDP can blast away as fast as

desired!

= can function in the face of

congestion

Transport Layer: 3-17

UDP: User Datagram Protocol

= Lightweight communication
between processes:

= Send and receive messages

= Avoid overhead of ordered,
reliable delivery:

= No connection setup delay, no in-
kernel connection state

32 bits -

source port # | dest port #

length checksum

application
data

(payload)

UDP segment format

Transport Layer: 3-18

UDP: Advantage

" Fine-grain control:
= UDP sends as soon as the application writes

" No connection set-up delay
= UDP sends without establishing a connection

= No connection state in host OS
= No buffers, parameters, sequence #s, etc

" Small header overhead
= UDP header is only eight-bytes long

Transport Layer: 3-19

UDP: User Datagram Protocol

= UDP use:
" streaming multimedia apps (loss tolerant, rate sensitive)
= DNS
= SNMP
= HTTP/3

= if reliable transfer needed over UDP (e.g., HTTP/3):

" add needed reliability at application layer
= add congestion control at application layer

Transport Layer: 3-20

UDP and TCP are implemented inside Kernel

= A typical OS includes userspace and
kernel space

" Kernel Space Program: User space
= Has full control over the hardware and
manages system resources like memory,

CPU scheduling, and I/O operations.
iy Kernel
= Runs in privileged mode

= User Space Program:

" has no direct access to hardware and Hardware
must communicate with the kernel for
resource management.

Transport Layer: 3-21

UDP and TCP are implemented inside Kernel

= Network Stack inside OS:
= Physical layer is hardware

= Application layer is implemented in User space
userspace
" Transport, network and link layer is

implemented inside kernel

Kernel

Hardware

Transport Layer: 3-22

UDP and TCP are implemented inside Kernel

= TCP and UDP inside OS:

User space

—

Network layer

Kernel

Link layer

Hardware

User space

Congestion Reliable data
Tcp Control transfer
Kernel
Network layer
Link layer

Hardware

Transport Layer: 3-23

Updating kernel is hard!

= \WWe only have three main OS:
= Linux, MAC OS and Windows

= Any updates must be approved by those User space
three OS
= Kernel affects billions of machines
T t
= We need to push the update of system to ——

billions of machines Kernel

Physical layer
Configuring update for Windows 10 H a rd Wa re ysicCal laye

35% complete

Do not turn off your computer

Transport Layer: 3-24

UDP provides the flexibility

ouc
space Control transfer User space

Congestion Reliable data
Tcp Control transfer
Network layer Kernel
Network layer
Link layer

Kernel

Link layer

Hardware Hardware

Transport Layer: 3-25

UDP provides the flexibility
YoufT) d NETRLX

Application 1 Application 1 Application 1
User Reliable data Reliable data Reliable data
Control transfer Control transfer Control transfer
space
Kernel XUDP lunp UDP

" Each application can implement its own algorithms without the
need of approval from the OS

» Updating application is much easier than updating the kernel (OS)

= Speeding up the development and implementation of new technology

Transport Layer: 3-26

Example: QUIC from Google

= QUIC (Quick UDP Internet Connections) is a transport-layer
protocol developed by Google replace TCP by using UDP

= providing faster connection establishment,
= improved congestion control, and
= better performance in mobile and high-latency environments

" Chrome Microsoft Edge, Firefox, and Safari all support it

" |n Chrome, QUIC is used by more than half of all connections to
Google's servers

Transport Layer: 3-27

UDP checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

15t number 2" number sum

Transmitted: 5 6 11

D 4

Received: 4 6 11
\ v J —
receiver-computed sender-computed
checksum checksum (as received)

O

Transport Layer: 3-28

Internet checksum

Goal: detect errors (i.e., flipped bits) in transmitted segment

sender: receiver:

" treat contents of UDP = compute checksum of received
segment (including UDP header segment

fields and IP addresses) as .
sequence of 16-bit integers = check if computed checksum equals

» checksum: addition (one’s checksum field value:
complement sum) of segment * not equal - error detected
content * equal - no error detected. But maybe

. ?
» checksum value out into errors nonetheless? More later

UDP checksum field

Transport Layer: 3-29

Internet checksum: an example

example: add two 16-bit integers

11100110011
11010101010

wraparound@1011101110111011

sum 10111011101 11100
checksum 01 00010001 00O0O011

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
Transport Layer: 3-30

Internet checksum: weak protection!

example: add two 16-bit integers

= O
o

1110011001100 110
1101010101010 10 1

wraparound 1)1 011 101110111011 Even though
> numbers have

ssam 1 011101110111100 [changed(bit

flips), no change
checksum 01 00010001000011 in checksum!

Transport Layer: 3-31

Summary: UDP

" “no frills” protocol:

* segments may be lost, delivered out of order

* best effort service: “send and hope for the best”
= UDP has its plusses:

* no setup/handshaking needed (no RTT incurred)
e can function when network service is compromised

* helps with reliability (checksum)

" build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

	Default Section
	Slide 1

	Section 1
	Slide 2: Transport layer: overview
	Slide 3: Transport layer: roadmap
	Slide 4: Transport services and protocols
	Slide 5: Transport vs. network layer services and protocols
	Slide 6: Two principal Internet transport protocols
	Slide 7: Chapter 3: roadmap
	Slide 8: Multiplexing/demultiplexing
	Slide 9: How demultiplexing works
	Slide 10: TCP VS UDP: connection VS connectionless
	Slide 11: Connectionless demultiplexing
	Slide 12: Connection-oriented demultiplexing
	Slide 13: Connection-oriented demultiplexing
	Slide 14: Connection-oriented demultiplexing
	Slide 15: Summary
	Slide 16: Chapter 3: roadmap
	Slide 17: UDP: User Datagram Protocol
	Slide 18: UDP: User Datagram Protocol
	Slide 19: UDP: Advantage
	Slide 20: UDP: User Datagram Protocol
	Slide 21: UDP and TCP are implemented inside Kernel
	Slide 22: UDP and TCP are implemented inside Kernel
	Slide 23: UDP and TCP are implemented inside Kernel
	Slide 24: Updating kernel is hard!
	Slide 25: UDP provides the flexibility
	Slide 26: UDP provides the flexibility
	Slide 27: Example: QUIC from Google
	Slide 28: UDP checksum
	Slide 29: Internet checksum
	Slide 30: Internet checksum: an example
	Slide 31: Internet checksum: weak protection!
	Slide 32: Summary: UDP

