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Transport layer: overview

Our goal: 

▪ understand principles 
behind transport layer 
services:
• multiplexing, 

demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet transport 
layer protocols:
• UDP: connectionless transport

• TCP: connection-oriented reliable 
transport

• TCP congestion control

Transport Layer: 3-2



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Transport services and protocols
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Upper Layer

Target Layer

Source Destination

Protocol

Lower Layer

Upper Layer

Target Layer

Lower Layer

Providing service

Leveraging service

Providing service

Leveraging service

▪ Providing service for upper layers

▪ Leveraging service provided by lower layers

▪ Communicating using protocols



Transport vs. network layer services and protocols
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▪transport layer: communication 
between processes 

• relies on, enhances, network layer services

▪network layer: 
communication 
between hosts

Application Layer

Protocol

TCP/UDP



Two principal Internet transport protocols
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▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control 
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪ services not available: 
• delay guarantees
• bandwidth guarantees
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Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Multiplexing/demultiplexing

Process 2Process 1Process 1 Process 3

Client/Host

Youtube 
server

Server/Host

TikTok 
Server

Netflix 
Server

Socket 1 Socket 2 Socket 3

Transport layer

Socket 1 Socket 2 Socket 3

Transport layer

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing as sender:
use header info to deliver
received segments to correct 
socket

demultiplexing as receiver:



How demultiplexing works
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Transport layer

Network layer

Source IP Destination IP

Source Port Destination Port

▪ Each network layer datagram 
has source and destination IP 
address 

▪ Each transport layer segment 
has source and destination 
port number

▪ Host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

Source IP Destination IP



TCP VS UDP: connection VS connectionless
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▪ UDP the socket are local and 
independent

▪ TCP two sockets are linked 
together

Socket 1

Transport layer

Socket 1

Transport layer

Socket 1

Transport layer

Socket 1

Transport layer

UDP client UDP server

TCP serverTCP client



Connectionless demultiplexing
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▪ UDP the socket are local and independent
▪ Demultiplexing based on destination port

Socket 1

Transport layerUDP client 1

Socket S

Transport layer

UDP server

Socket 2

Transport layerUDP client 2

Socket 3

Transport layer UDP client 3

Socket 4

Transport layer UDP client 4

Dest Port: 8888

Dest Port: 8888

Dest Port: 8888

Dest Port: 8888

Socket Port: 8888

Dest IP: xx.xx.xx.xx

Dest IP: xx.xx.xx.xx Dest IP: xx.xx.xx.xx

Dest IP: xx.xx.xx.xx

Host IP: xx.xx.xx.xx

IP/UDP datagrams with same 
dest. port #, but different 

source IP addresses and/or 
source port numbers will be 
directed to same socket at 

receiving host



Connection-oriented demultiplexing
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▪ TCP two sockets are linked together
▪ We need to ID the connection for demultiplexing

Socket 1

Transport layerUDP client 1
Transport layer TCP server

Socket 2

Transport layer UDP client 2

Src IP, Src Port, Dest IP, Dest Port

Socket S1 Socket S3 Socket S2

Socket 3

Transport layer UDP client 3



Connection-oriented demultiplexing

Process 2Process 1Process 1 Process 3

Client/Host

Youtube 
server

Server/Host

TikTok 
Server

Netflix 
Server

Socket 1 Socket 2 Socket 3

Transport layer

Socket 1 Socket 2 Socket 3

Transport layer

Server IP

Client IP

81 82 835333 7128 6888

Client IP 5333 Server IP 81

Client IP 7128 Server IP 82

Client IP 6888 Server IP 83

4-tuple matters here!



Connection-oriented demultiplexing

▪ TCP socket identified by 
4-tuple: 
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many 
simultaneous TCP sockets:
• each socket identified by its 

own 4-tuple

• each socket associated with 
a different connecting client

▪ demux: receiver uses all 
four values (4-tuple) to 
direct segment to 
appropriate socket
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Summary

▪ Multiplexing, demultiplexing: based on segment, datagram 
header field values

▪ UDP: demultiplexing using destination port number (only)

▪ TCP: demultiplexing using 4-tuple: source and destination IP 
addresses, and port numbers

▪ Multiplexing/demultiplexing happen at all layers
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Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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UDP: User Datagram Protocol

▪ “no frills,” “bare bones” 
Internet transport protocol

▪ “best effort” service, UDP 
segments may be:
• lost

• delivered out-of-order to app

▪ no connection 
establishment (which can 
add RTT delay)

▪ simple: no connection state 
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as 

desired!

▪ can function in the face of 
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP 

sender, receiver
• each UDP segment handled 

independently of others
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UDP: User Datagram Protocol

▪ Lightweight communication 
between processes:
▪ Send and receive messages

▪ Avoid overhead of ordered, 
reliable delivery: 
▪ No connection setup delay, no in-

kernel connection state
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source port # dest port #

32 bits

application
data 

(payload)

UDP segment format

length checksum



UDP: Advantage

▪ Fine-grain control:
▪ UDP sends as soon as the application writes

▪ No connection set-up delay
▪ UDP sends without establishing a connection

▪ No connection state in host OS
▪ No buffers, parameters, sequence #s, etc

▪ Small header overhead
▪ UDP header is only eight-bytes long
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UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3): 
▪ add needed reliability at application layer

▪ add congestion control at application layer
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UDP and TCP are implemented inside Kernel

▪ A typical OS includes userspace and
kernel space

▪ Kernel Space Program:
▪ Has full control over the hardware and 

manages system resources like memory, 
CPU scheduling, and I/O operations.

▪ Runs in privileged mode 

▪ User Space Program:
▪ has no direct access to hardware and 

must communicate with the kernel for 
resource management.
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UDP and TCP are implemented inside Kernel

▪ Network Stack inside OS:
▪ Physical layer is hardware

▪ Application layer is implemented in
userspace

▪ Transport, network and link layer is
implemented inside kernel
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UDP and TCP are implemented inside Kernel

▪ TCP and UDP inside OS:
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Updating kernel is hard!

▪ We only have three main OS:
▪ Linux, MAC OS and Windows

▪ Any updates must be approved by those
three OS
▪ Kernel affects billions of machines

▪ We need to push the update of system to
billions of machines
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UDP provides the flexibility
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UDP provides the flexibility
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Congestion
Control
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Control
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▪ Each application can implement its own algorithms without the
need of approval from the OS

▪ Updating application is much easier than updating the kernel (OS)
▪ Speeding up the development and implementation of new technology

UDP UDP UDP



Example: QUIC from Google
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▪ QUIC (Quick UDP Internet Connections) is a transport-layer 
protocol developed by Google replace TCP by using UDP
▪ providing faster connection establishment, 

▪ improved congestion control, and 

▪ better performance in mobile and high-latency environments

▪ Chrome Microsoft Edge, Firefox, and Safari all support it

▪ In Chrome, QUIC is used by more than half of all connections to 
Google's servers



UDP checksum

Transmitted:            5               6                11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received:            4               6                11

1st number 2nd number sum

receiver-computed 
checksum

sender-computed 
checksum (as received)

=
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Internet checksum

sender:
▪ treat contents of UDP 

segment (including UDP header 
fields and IP addresses) as 
sequence of 16-bit integers

▪ checksum: addition (one’s 
complement sum) of segment 
content

▪ checksum value put into 
UDP checksum field

receiver:
▪ compute checksum of received 

segment

▪ check if computed checksum equals 
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe 
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment
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Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be 
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1
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Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1 

1 0 

Even though 
numbers have 
changed (bit 
flips), no change 
in checksum!
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Summary: UDP

▪ “no frills” protocol: 

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer 
(e.g., HTTP/3)
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