
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

Transport Layer: 3-1

Yaxiong Xie

Department of Computer Science and Engineering

University at Buffalo, SUNY

Adapted from the slides of the book’s authors

Transport layer: overview

Our goal:

▪ understand principles
behind transport layer
services:
• multiplexing,

demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ learn about Internet transport
layer protocols:
• UDP: connectionless transport

• TCP: connection-oriented reliable
transport

• TCP congestion control

Transport Layer: 3-2

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

Transport Layer: 3-4

Upper Layer

Target Layer

Source Destination

Protocol

Lower Layer

Upper Layer

Target Layer

Lower Layer

Providing service

Leveraging service

Providing service

Leveraging service

▪ Providing service for upper layers

▪ Leveraging service provided by lower layers

▪ Communicating using protocols

Transport vs. network layer services and protocols

Transport Layer: 3-5

Process 2Process 1Process 1 Process 3

Client/Host

Youtube
server

Server/Host

TikTok
Server

Netflix
Server

Transport layer

Socket 1 Socket 2 Socket 3 Socket 1 Socket 2 Socket 3

Transport layer

Network layer Network layer

▪transport layer: communication
between processes

• relies on, enhances, network layer services

▪network layer:
communication
between hosts

Application Layer

Protocol

TCP/UDP

Two principal Internet transport protocols

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• reliable, in-order delivery

• congestion control
• flow control
• connection setup

▪UDP: User Datagram Protocol
• unreliable, unordered delivery

• no-frills extension of “best-effort” IP

▪ services not available:
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-6

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-7

Multiplexing/demultiplexing

Process 2Process 1Process 1 Process 3

Client/Host

Youtube
server

Server/Host

TikTok
Server

Netflix
Server

Socket 1 Socket 2 Socket 3

Transport layer

Socket 1 Socket 2 Socket 3

Transport layer

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing as sender:
use header info to deliver
received segments to correct
socket

demultiplexing as receiver:

How demultiplexing works

Transport Layer: 3-9

Transport layer

Network layer

Source IP Destination IP

Source Port Destination Port

▪ Each network layer datagram
has source and destination IP
address

▪ Each transport layer segment
has source and destination
port number

▪ Host uses IP addresses & port
numbers to direct segment to
appropriate socket

Source IP Destination IP

TCP VS UDP: connection VS connectionless

Transport Layer: 3-10

▪ UDP the socket are local and
independent

▪ TCP two sockets are linked
together

Socket 1

Transport layer

Socket 1

Transport layer

Socket 1

Transport layer

Socket 1

Transport layer

UDP client UDP server

TCP serverTCP client

Connectionless demultiplexing

Transport Layer: 3-11

▪ UDP the socket are local and independent
▪ Demultiplexing based on destination port

Socket 1

Transport layerUDP client 1

Socket S

Transport layer

UDP server

Socket 2

Transport layerUDP client 2

Socket 3

Transport layer UDP client 3

Socket 4

Transport layer UDP client 4

Dest Port: 8888

Dest Port: 8888

Dest Port: 8888

Dest Port: 8888

Socket Port: 8888

Dest IP: xx.xx.xx.xx

Dest IP: xx.xx.xx.xx Dest IP: xx.xx.xx.xx

Dest IP: xx.xx.xx.xx

Host IP: xx.xx.xx.xx

IP/UDP datagrams with same
dest. port #, but different

source IP addresses and/or
source port numbers will be
directed to same socket at

receiving host

Connection-oriented demultiplexing

Transport Layer: 3-12

▪ TCP two sockets are linked together
▪ We need to ID the connection for demultiplexing

Socket 1

Transport layerUDP client 1
Transport layer TCP server

Socket 2

Transport layer UDP client 2

Src IP, Src Port, Dest IP, Dest Port

Socket S1 Socket S3 Socket S2

Socket 3

Transport layer UDP client 3

Connection-oriented demultiplexing

Process 2Process 1Process 1 Process 3

Client/Host

Youtube
server

Server/Host

TikTok
Server

Netflix
Server

Socket 1 Socket 2 Socket 3

Transport layer

Socket 1 Socket 2 Socket 3

Transport layer

Server IP

Client IP

81 82 835333 7128 6888

Client IP 5333 Server IP 81

Client IP 7128 Server IP 82

Client IP 6888 Server IP 83

4-tuple matters here!

Connection-oriented demultiplexing

▪ TCP socket identified by
4-tuple:
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple

• each socket associated with
a different connecting client

▪ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-14

Summary

▪ Multiplexing, demultiplexing: based on segment, datagram
header field values

▪ UDP: demultiplexing using destination port number (only)

▪ TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

▪ Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-15

Chapter 3: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-16

UDP: User Datagram Protocol

▪ “no frills,” “bare bones”
Internet transport protocol

▪ “best effort” service, UDP
segments may be:
• lost

• delivered out-of-order to app

▪ no connection
establishment (which can
add RTT delay)

▪ simple: no connection state
at sender, receiver

▪ small header size

▪ no congestion control
▪ UDP can blast away as fast as

desired!

▪ can function in the face of
congestion

Why is there a UDP?

▪ connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
Transport Layer: 3-17

UDP: User Datagram Protocol

▪ Lightweight communication
between processes:
▪ Send and receive messages

▪ Avoid overhead of ordered,
reliable delivery:
▪ No connection setup delay, no in-

kernel connection state

Transport Layer: 3-18

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

UDP: Advantage

▪ Fine-grain control:
▪ UDP sends as soon as the application writes

▪ No connection set-up delay
▪ UDP sends without establishing a connection

▪ No connection state in host OS
▪ No buffers, parameters, sequence #s, etc

▪ Small header overhead
▪ UDP header is only eight-bytes long

Transport Layer: 3-19

UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ DNS

▪ SNMP

▪ HTTP/3

▪ if reliable transfer needed over UDP (e.g., HTTP/3):
▪ add needed reliability at application layer

▪ add congestion control at application layer

Transport Layer: 3-20

UDP and TCP are implemented inside Kernel

▪ A typical OS includes userspace and
kernel space

▪ Kernel Space Program:
▪ Has full control over the hardware and

manages system resources like memory,
CPU scheduling, and I/O operations.

▪ Runs in privileged mode

▪ User Space Program:
▪ has no direct access to hardware and

must communicate with the kernel for
resource management.

Transport Layer: 3-21

User space

Kernel

Transport layer

Network layer

Link layer

Physical layer

Application layer

Hardware

UDP and TCP are implemented inside Kernel

▪ Network Stack inside OS:
▪ Physical layer is hardware

▪ Application layer is implemented in
userspace

▪ Transport, network and link layer is
implemented inside kernel

Transport Layer: 3-22

User space

Kernel

Transport layer

Network layer

Link layer

Physical layer

Application layer

Hardware

UDP and TCP are implemented inside Kernel

▪ TCP and UDP inside OS:

Transport Layer: 3-23

User space

Kernel

UDP

Network layer

Link layer

Physical layer

Application layer

Hardware

User space

Kernel
Network layer

Link layer

Physical layer

Application layer

Hardware

Congestion
Control

Reliable data
transferTCP

Updating kernel is hard!

▪ We only have three main OS:
▪ Linux, MAC OS and Windows

▪ Any updates must be approved by those
three OS
▪ Kernel affects billions of machines

▪ We need to push the update of system to
billions of machines

Transport Layer: 3-24

User space

Kernel

Transport layer

Network layer

Link layer

Physical layer

Application layer

Hardware

UDP provides the flexibility

Transport Layer: 3-25

User
space

Kernel

UDP

Network layer

Link layer

Physical layerHardware

User space

Kernel
Network layer

Link layer

Physical layer

Application layer

Hardware

Congestion
Control

Reliable data
transferTCP

Congestion
Control

Reliable data
transfer

UDP provides the flexibility

Transport Layer: 3-26

User
space

Kernel

Congestion
Control

Reliable data
transfer

Application 1

Congestion
Control

Reliable data
transfer

Application 1

Congestion
Control

Reliable data
transfer

Application 1

▪ Each application can implement its own algorithms without the
need of approval from the OS

▪ Updating application is much easier than updating the kernel (OS)
▪ Speeding up the development and implementation of new technology

UDP UDP UDP

Example: QUIC from Google

Transport Layer: 3-27

▪ QUIC (Quick UDP Internet Connections) is a transport-layer
protocol developed by Google replace TCP by using UDP
▪ providing faster connection establishment,

▪ improved congestion control, and

▪ better performance in mobile and high-latency environments

▪ Chrome Microsoft Edge, Firefox, and Safari all support it

▪ In Chrome, QUIC is used by more than half of all connections to
Google's servers

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Transport Layer: 3-28

Internet checksum

sender:
▪ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

▪ checksum: addition (one’s
complement sum) of segment
content

▪ checksum value put into
UDP checksum field

receiver:
▪ compute checksum of received

segment

▪ check if computed checksum equals
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Transport Layer: 3-29

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-30

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-31

Summary: UDP

▪ “no frills” protocol:

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)

• can function when network service is compromised

• helps with reliability (checksum)

▪ build additional functionality on top of UDP in application layer
(e.g., HTTP/3)

	Default Section
	Slide 1

	Section 1
	Slide 2: Transport layer: overview
	Slide 3: Transport layer: roadmap
	Slide 4: Transport services and protocols
	Slide 5: Transport vs. network layer services and protocols
	Slide 6: Two principal Internet transport protocols
	Slide 7: Chapter 3: roadmap
	Slide 8: Multiplexing/demultiplexing
	Slide 9: How demultiplexing works
	Slide 10: TCP VS UDP: connection VS connectionless
	Slide 11: Connectionless demultiplexing
	Slide 12: Connection-oriented demultiplexing
	Slide 13: Connection-oriented demultiplexing
	Slide 14: Connection-oriented demultiplexing
	Slide 15: Summary
	Slide 16: Chapter 3: roadmap
	Slide 17: UDP: User Datagram Protocol
	Slide 18: UDP: User Datagram Protocol
	Slide 19: UDP: Advantage
	Slide 20: UDP: User Datagram Protocol
	Slide 21: UDP and TCP are implemented inside Kernel
	Slide 22: UDP and TCP are implemented inside Kernel
	Slide 23: UDP and TCP are implemented inside Kernel
	Slide 24: Updating kernel is hard!
	Slide 25: UDP provides the flexibility
	Slide 26: UDP provides the flexibility
	Slide 27: Example: QUIC from Google
	Slide 28: UDP checksum
	Slide 29: Internet checksum
	Slide 30: Internet checksum: an example
	Slide 31: Internet checksum: weak protection!
	Slide 32: Summary: UDP

