Chapter 2 Application Layer

Yaxiong Xie

Department of Computer Science and Engineering University at Buffalo, SUNY

Adapted from the slides of the book's authors

Computer Networking: A Top-Down Approach 8th edition n Jim Kurose, Keith Ross Pearson, 2020

Application layer: overview

- Principles of network applications
- socket programming with UDP and TCP
- Web and HTTP
- E-mail, SMTP, IMAP

The Domain Name System DNS

 video streaming and content distribution networks

SMTP RFC (5321)

- uses TCP to reliably transfer email messages from client (mail server initiating connection) to server, port 25
 - direct transfer: sending server (acting like client) to receiving server
- three phases of transfer
 - SMTP handshaking (greeting)
 - SMTP transfer of messages
 - SMTP closure
- command/response interaction (like HTTP)
 - commands: ASCII text
 - response: status code and phrase

stream video traffic: major consumer of Internet bandwidth

• Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)

stream video traffic: major consumer of Internet bandwidth

• Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)

- <u>Challenge:</u> long videos and thus large video size
 - Downloading the whole video before playing

Avatar

PG-13 2009 · Sci-fi/Action · 2h 42m

- <u>Challenge:</u> long videos and thus large video size
 - Downloading the whole video before playing

Avatar

PG-13 2009 · Sci-fi/Action · 2h 42m

- Challenge: long videos and thus large video size
 - Downloading the whole video before playing
- Solution: divide the video into chunks
 - We can start to play the video after downloading a video chunk

The whole video

Challenge: video quality and channel capacity

8K video

Server

User

• **<u>Challenge</u>**: video quality and channel capacity

Challenge: video quality and channel capacity

• **<u>Challenge</u>**: video quality and channel capacity

- Challenge: video quality and channel capacity
- Solution: multiple encoded video copies

Streaming multimedia: DASH

Dynamic, Adaptive Streaming over HTTP

PSY - GENTLEMAN M/V

🚹 8.4M 🖓 🖈 Share 🛓 Download 🛞 Clip Ξ+ Save …

1.6B views 10 years ago #PSY #\\0 #GENTLEMAN PSY - 'I LUV IT' M/V @ ■ • PSY - 'I LUV IT' M/V

Streaming multimedia: DASH

Dynamic, Adaptive Streaming over HTTP

Share

↓ Download

=+ Save

...

PSY - GENTLEMAN M/V

Subscribe

Application Layer: 2-111

Streaming multimedia: DASH

13 8.4M

 \Box

G Share

↓ Download

% Clip

=+ Save

...

PSY - GENTLEMAN M/V

Subscribe

Dynamic, Adaptive Streaming over HTTP

Application Layer: 2-112

User

Video Streaming Applications: QoE (Quality of User Experience)

Video Start Time

Video Quality

Rebuffering Event

The time between your click of the video and the playing of the video

Application Layer: 2-122

- Long video: always downloading the next video chunk
 - The only problem is to determine the quality of each video chunk

You Tube

- Long video: always downloading the next video chunk
 - The only problem is to determine the quality of each video chunk

- Long video: always downloading the next video chunk
 - The only problem is to determine the quality of each video chunk

plication Layer: 2-127

Application Layer: 2-132

User Swipes

We can immediately play the second video when the user swipes

User

Where should we host the videos

- stream video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)

Where should we host the videos

- stream video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of videos) to hundreds of thousands of *simultaneous* users?

- option 1: single, large "megaserver"
 - single point of failure
 - point of network congestion
 - long (and possibly congested) path to distant clients

....quite simply: this solution *doesn't scale*

Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of videos) to hundreds of thousands of *simultaneous* users?

option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)

Content distribution networks (CDNs)

- Definition: A Content Delivery Network (CDN) is a distributed network of servers that helps deliver content (web pages, videos, images, software) efficiently.
 - Reduces latency by caching content closer to users.
 - Improves website performance, reliability, and security.

Key Benefits:

- Faster content delivery
- Reduced bandwidth costs
- Load balancing & DDoS protection
- Enhanced user experience

CDN Server

- Live server For availability
- Lowest load To balance load across the servers
- **Closest** Nearest geographically, or in round-trip time
- Best performance Throughput, latency, ...
- Cheapest bandwidth, electricity, ...

Major Public CDN Providers

Akamai

- One of the largest CDN providers.
- Used by Disney+, ESPN, PayPal, Microsoft, Sony PlayStation, etc.

Cloudflare

- Offers CDN with built-in DDoS protection.
- Used by Medium, Discord, Shopify, IBM, etc.

Amazon CloudFront

- Amazon's CDN service, part of AWS.
- Used by Amazon Prime Video, Twitch, Slack, etc.

Fastly

- Popular for low-latency edge computing.
- Used by Reddit, The New York Times, Hulu, and GitHub.

Public CDN: Akamai today:

Source: https://networkingchannel.eu/living-on-the-edge-for-a-quarter-century-an-akamai-retrospective-downloads/

Private CDN

Companies with Their Own CDN Infrastructure

Company	Private CDN	Purpose
Google	Google Global Cache (GGC)	YouTube, Search, Drive
Netflix	Open Connect	Video streaming
Amazon	AWS CloudFront	Prime Video, e-commerce
Apple	Apple Edge Cache	App Store, iCloud, TV+
Microsoft	Xbox CDN, Azure Front Door	Windows Updates, Xbox Live
Meta (Facebook, Instagram, WhatsApp)	Facebook Edge Network	Social media content delivery
TikTok	ByteDance CDN	Short video delivery

Why Build a Private CDN?

•Reduces costs for large-scale content providers.

•Optimized for specific needs (e.g., Netflix Open Connect is built for streaming).

•Improves performance and security control.

Chapter 2: Summary

our study of network application layer is now complete!

- application architectures
 - client-server
 - P2P
- application service requirements:
 - reliability, bandwidth, delay
- Internet transport service model
 - connection-oriented, reliable: TCP
 - unreliable, datagrams: UDP

- socket programming: TCP, UDP sockets
- specific protocols:
 - HTTP
 - SMTP, IMAP
 - DNS
 - P2P: BitTorrent
- video streaming, CDNs