
Chapter 2
Application Layer

Application Layer: 2-1

Computer Networking: A
Top-Down Approach
8th edition n
Jim Kurose, Keith Ross
Pearson, 2020Adapted from the slides of the book’s authors

Yaxiong Xie

Department of Computer Science and Engineering

University at Buffalo, SUNY

Application layer: overview

▪ Principles of network
applications

▪ socket programming with
UDP and TCP
• Transport layer interface

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

Application Layer: 2-2

Example: how to run a network application?

Application Layer: 2-3

User Youtube Server

A Mesh of Routers

Example: how to run a network application?

Application Layer: 2-4

User

A Mesh of Routers

Youtube Server
YouTube

Client

YouTube
Client

YouTube
Client

YouTube
Client

YouTube
Server

Example: how to run a network application?

Application Layer: 2-5

User

A Mesh of Routers

Youtube Server
YouTube

Client

YouTube
Client

YouTube
Client

YouTube
Client

YouTube
Server

Application layer is an end-to-end layer

Application Layer: 2-6

User
A Mesh of Routers

Youtube

Server

no need to write software
for network-core devices

▪ network-core devices do not
run user applications

▪ applications on end systems
allow for rapid app
development, propagation

write programs that:

▪ run on (different) end systems

▪ communicate over network

▪ e.g., web server software
communicates with browser
software

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Client-server paradigm
server:
▪ always-on host
▪ permanent IP address
▪ often in data centers, for scaling

clients:
▪ contact, communicate with server
▪ may be intermittently connected
▪ may have dynamic IP addresses
▪ do not communicate directly with

each other

▪ examples: HTTP, IMAP, FTP
Application Layer: 2-7

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-peer architecture
▪ no always-on server
▪ arbitrary end systems directly

communicate
▪ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, as well as new service
demands

▪ peers are intermittently connected
and change IP addresses
• complex management

▪ example: P2P file sharing
Application Layer: 2-8

Processes communicating

process: program running
within a host

▪within same host, two
processes communicate
using inter-process
communication (defined by
OS)

▪processes in different hosts
communicate by exchanging
messages

Application Layer: 2-9

Application
Layer

Transport
Layer

Host

IPC

Processes communicating

process: program running
within a host

▪within same host, two
processes communicate
using inter-process
communication (defined by
OS)

▪processes in different hosts
communicate by exchanging
messages

▪ note: applications with
P2P architectures also
have client processes &
server processes

client process: process that
initiates communication

server process: process
that waits to be contacted

clients, servers

Application Layer: 2-10

Addressing processes

▪ to receive messages, a process
must have an identifier

▪ host device has unique 32-bit
IP address

▪Q: does IP address of host on
which process runs suffice for
identifying the process?

▪ A: no, many processes
can be running on
same host

Application Layer: 2-11

Application
Layer

Transport
Layer

Host: IP 192.168.1.1

IPC

Port: 20 Port: 80

Addressing processes

▪ identifier includes both IP address
and port numbers associated with
process on host.

▪ example port numbers:
• HTTP server: 80

• mail server: 25

Application Layer: 2-12

Application
Layer

Transport
Layer

Host: IP 192.168.1.1

IPC

Port: 20 Port: 80

Host Process:

IP 192.168.1.1 + Port: 20

Host Process:

IP 192.168.1.1 + Port: 80

Sockets (interface) and Protocols

Application Layer: 2-13

Application
Layer

Transport
Layer

Host: IP 192.168.1.1

IPC

▪ process sends/receives messages to/from its socket

▪ Process communicate with process on the other host via application
layer protocols

Application Layer
Protocols

Sockets

Application
Layer

Transport
Layer

Host: IP 192.168.1.1

IPC

Sockets

An application-layer protocol defines:

▪ types of messages exchanged,

• e.g., request, response

▪message syntax:

• what fields in messages &
how fields are delineated

▪message semantics

• meaning of information in
fields

▪ rules for when and how
processes send & respond to
messages

open protocols:

▪ defined in RFCs, everyone
has access to protocol
definition

▪ allows for interoperability

▪ e.g., HTTP, SMTP

proprietary protocols:

▪ e.g., Skype, Zoom

Application Layer: 2-14

What transport service does an app need?

data integrity
▪ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

▪ other apps (e.g., audio) can
tolerate some loss

timing
▪ some apps (e.g., Internet

telephony, interactive games)
require low delay to be “effective”

throughput
▪ some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

▪ other apps (“elastic apps”)
make use of whatever
throughput they get

security
▪ encryption, data integrity,

…

Application Layer: 2-15

Transport service requirements: common apps

application

file transfer/download

e-mail

Web documents

real-time audio/video

streaming audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5Kbps-1Mbps

video:10Kbps-5Mbps

same as above

Kbps+

elastic

time sensitive?

no

no

no

yes, 10’s msec

yes, few secs

yes, 10’s msec

yes and no

Application Layer: 2-16

Internet transport protocols services
(Details in Chapter 3)
TCP service:

▪ reliable transport between sending
and receiving process

▪ flow control: sender won’t
overwhelm receiver

▪ congestion control: throttle sender
when network overloaded

▪ connection-oriented: setup required
between client and server processes

▪ does not provide: timing, minimum
throughput guarantee, security

UDP service:

▪ unreliable data transfer
between sending and receiving
process

▪ does not provide: reliability,
flow control, congestion
control, security, or connection
setup.

Q: why bother? Why
is there a UDP?

Application Layer: 2-17

Internet applications, and transport protocols

application

file transfer/download

e-mail

Web documents

Internet telephony

streaming audio/video

interactive games

application
layer protocol

FTP [RFC 959]

SMTP [RFC 5321]

HTTP 1.1 [RFC 7320]

SIP [RFC 3261], RTP [RFC

3550], or proprietary

HTTP [RFC 7320], DASH

WOW, FPS (proprietary)

transport protocol

TCP

TCP

TCP

TCP or UDP

UDP or TCP

UDP or TCP

Application Layer: 2-18

Application Layer: Overview

▪ Principles of network
applications

▪ socket programming with
UDP and TCP

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

Application Layer: 2-19

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-transport
protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer: 2-20

Socket programming

Two socket types for two transport services:
▪ UDP: unreliable datagram
▪ TCP: reliable, byte stream-oriented

More on these protocols later (in Chapter 3), but
• relevant to application programming (API)
• useful for PA1

Application Layer: 2-21

Socket programming

Two socket types for two transport services:
▪ UDP: unreliable datagram
▪ TCP: reliable, byte stream-oriented

Application Layer: 2-22

Application
Layer

Transport
Layer

Host: IP 192.168.1.2

Port: 20

TCP

Application
Layer

Transport
Layer

Host: IP 192.168.1.1
Port: 20

TCP
TCP Connection

Retransmit if packet lost

Socket programming

Two socket types for two transport services:
▪ UDP: unreliable datagram
▪ TCP: reliable, byte stream-oriented

Application Layer: 2-23

Application
Layer

Transport
Layer

Host: IP 192.168.1.2

Port: 20

TCP

Application
Layer

Transport
Layer

Host: IP 192.168.1.1
Port: 20

TCP
TCP Connection

Send ACK to inform the sender

Socket programming

Two socket types for two transport services:
▪ UDP: unreliable datagram
▪ TCP: reliable, byte stream-oriented

Application Layer: 2-24

Application
Layer

Transport
Layer

Host: IP 192.168.1.2

Port: 20

UDP

Application
Layer

Transport
Layer

Host: IP 192.168.1.1
Port: 20

UDP

No Connection
No ACK

The application can generate ACK
and send it over UDP

Socket programming with UDP

UDP: no “connection” between client and server:
▪ no handshaking before sending data
▪ sender (e.g. client) explicitly attaches its IP destination address and

port #, in addition to the destination’s IP/port info to each packet
▪ receiver (e.g. server) extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
▪ UDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server processes

Application Layer: 2-25

Socket programming with UDP

Application Layer: 2-26

ServerClient

• Socket Creation: socket()

• Binding to an Address: bind()

• Sending and Receiving Data: sendto(), recvfrom()

• Closing the Socket: close()

socket()Create Socketsocket()Create Socket

Bind the socket bind()

Key Operations of UDP socket

sendto()Send data recvfrom()Receive data

recvfrom()Receive data sendto()Send data

close()Close socket close()Close socket

Socket programming with TCP

Application Layer: 2-27

ServerClient

• Socket Creation: socket()

• Binding to an Address: bind()

• Listening and Accepting Connections (TCP): listen(),
accept()

• Connect to the server connect()

• Sending and Receiving Data: sendto(), recvfrom()

• Closing the Socket: close()

socket()Create Socketsocket()Create Socket

Bind the socket bind()

Key Operations of TCP socket

sendto()Send data recvfrom()Receive data

recvfrom()Receive data sendto()Send data

close()Close socket close()Close socket

List to the socket listen()

connect()Connect to server accpet()accept

Connection built

Application layer: overview

▪ Principles of network
applications

▪ socket programming with
UDP and TCP

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

Application Layer: 2-28

Architecture of a web page

Web and HTTP

First, a quick review…

▪ web page consists of objects, each of
which can be stored on different Web
servers

Application Layer: 2-29

Text Text Text

Text Image Image Objects

Objects

Web and HTTP

First, a quick review…

▪ web page consists of objects, each of
which can be stored on different Web
servers

Application Layer: 2-30

Objects

Architecture of a web page

Text Text Text

Text Image Image Objects

Objects

Web and HTTP

First, a quick review…

▪ web page consists of objects, each of
which can be stored on different Web
servers

Application Layer: 2-31Architecture of a web page

Text Text Text

Text Image Image

Server 2

Server 1

▪ object can be HTML file,
JPEG image, Java applet,
audio file,…

Web and HTTP

Application Layer: 2-32Architecture of a web page

Text Text Text

Text Image Image

Server 2

Server 1

▪ web page consists of base HTML-file which includes several
referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

someDept/pic.gif

HTTP overview

HTTP: hypertext transfer protocol
▪ Web’s application-layer protocol

Application Layer: 2-33

Application
Layer

Transport
Layer

Host: IP 192.168.1.1

IPC
Application Layer

Protocols

Sockets

Application
Layer

Transport
Layer

Host: IP 192.168.1.1

IPC

Sockets

HTTP overview

HTTP: hypertext transfer protocol
▪ Web’s application-layer protocol

Application Layer: 2-34

Application
Layer

Transport
Layer

Host: IP 192.168.1.1
Application Layer
Protocols: HTTP

Sockets

Application
Layer

Transport
Layer

Host: IP 192.168.1.1

SocketsTransport Layer
Protocol: TCP

HTTP overview

HTTP: hypertext transfer protocol
▪ Web’s application-layer protocol
▪ client/server model:

• client: browser that requests,
receives, (using HTTP protocol) and
“displays” Web objects

• server: Web server sends (using
HTTP protocol) objects in response
to requests

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

Application Layer: 2-35

HTTP overview (continued)

HTTP uses TCP:
▪ client initiates TCP connection

(creates socket) to server, port 80

▪ server accepts TCP connection
from client

▪ HTTP messages (application-layer
protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)

▪ TCP connection closed

Application Layer: 2-36

ServerClient

TCP connection request

TCP connection built

HTTP request

HTTP response

TCP Close

HTTP connections: two types

Non-persistent HTTP

1. TCP connection opened

2. at most one object sent
over TCP connection

3. TCP connection closed

downloading multiple
objects required multiple
connections

Application Layer: 2-38

ServerClient

TCP connection request
TCP connection built

TCP Close

HTTP request
HTTP response

TCP connection request
TCP connection built

TCP Close

HTTP request
HTTP response

HTTP connections: two types

Persistent HTTP

▪TCP connection opened to
a server

▪multiple objects can be
sent over single TCP
connection between client,
and that server

▪TCP connection closed

Application Layer: 2-39

ServerClient

TCP connection request
TCP connection built

HTTP request
HTTP response

HTTP request
HTTP response

HTTP request
HTTP response

TCP Close

Non-persistent HTTP: response time

RTT (Round-Trip Time): time for a
small packet to travel from client to
server and back

HTTP response time (per object):
▪ one RTT to initiate TCP connection
▪ one RTT for HTTP request and first few

bytes of HTTP response to return
▪ object/file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Application Layer: 2-40

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:

▪ requires 2 RTTs per object

▪OS overhead for each TCP
connection

▪ browsers often open multiple
parallel TCP connections to
fetch referenced objects in
parallel

Persistent HTTP (HTTP1.1):

▪ server leaves TCP connection open
after sending response

▪ subsequent HTTP messages
between same client/server sent
over open TCP connection

▪ client sends requests as soon as it
encounters a referenced object

▪ as little as one RTT for all the
referenced objects (cutting
response time in half)

Application Layer: 2-41

HTTP request message

▪ two types of HTTP messages: request, response

▪ HTTP request message:
• ASCII (human-readable format)

header
 lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n
Connection: keep-alive\r\n

\r\n

carriage return character
line-feed character

request line
(GET, POST ….)

Followed by “entity
body” or just “body”

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer: 2-42

HTTP request message

▪ two types of HTTP messages: request, response

▪ HTTP request message:
• ASCII (human-readable format)

header
 lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n
Connection: keep-alive\r\n

\r\n

carriage return character
line-feed character

request line
(GET, POST ….)

Followed by “entity
body” or just “body”

* Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer: 2-43

Other HTTP request messages (omitted)
▪ PUT vs POST
▪ GET with a question mark after the URL vs GET vs POST
▪ Search StackOverflow and other documents

Application Layer: 2-44

HTTP response message

status line (protocol
status code status phrase)

header
 lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK

Date: Tue, 08 Sep 2020 00:53:20 GMT

Server: Apache/2.4.6 (CentOS)

OpenSSL/1.0.2k-fips PHP/7.4.9

mod_perl/2.0.11 Perl/v5.16.3

Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT

ETag: "a5b-52d015789ee9e"

Accept-Ranges: bytes

Content-Length: 2651

Content-Type: text/html; charset=UTF-8

\r\n

data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer: 2-45

HTTP response message

status line (protocol
status code status phrase)

header
 lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK

Date: Tue, 08 Sep 2020 00:53:20 GMT

Server: Apache/2.4.6 (CentOS)

OpenSSL/1.0.2k-fips PHP/7.4.9

mod_perl/2.0.11 Perl/v5.16.3

Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT

ETag: "a5b-52d015789ee9e"

Accept-Ranges: bytes

Content-Length: 2651

Content-Type: text/html; charset=UTF-8

\r\n

data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer: 2-46

HTTP response status codes

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in

Location: field)

400 Bad Request
• request msg not understood by server

404 Not Found
• requested document not found on this server

505 HTTP Version Not Supported

▪ status code appears in 1st line in server-to-client response message.
▪ some sample codes:

Application Layer: 2-47

Maintaining user/server state: cookies

HTTP GET/response interaction is
stateless

▪ no notion of multi-step exchanges of
HTTP messages to complete a Web
“transaction”
• no need for client/server to track

“state” of multi-step exchange

• all HTTP requests are independent of
each other

• no need for client/server to “recover”
from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes
two changes to X, or none at all

time time

X

X

X’

X’’

X’’

t’

Q: what happens if network connection or
client crashes at t’ ?

Application Layer: 2-48

Maintaining user/server state: cookies

Web sites and client browsers use
cookies to maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message

2) cookie header line in next HTTP
request message

3) cookie file kept on user’s host,
managed by user’s browser

4) back-end database at Web site

Example:
▪ Susan uses browser on laptop,

visits specific e-commerce site
for first time

▪ when initial HTTP request
arrives at site, site creates:

• unique ID (aka “cookie”)

• entry in backend database
for ID

• subsequent HTTP requests
from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Application Layer: 2-49

Maintaining user/server state: cookies
client

server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
 entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time Application Layer: 2-50

HTTP cookies: comments

What cookies can be used for:
▪ authorization

▪ shopping carts

▪ recommendations

▪ user session state (Web e-mail)

cookies and privacy:
▪ cookies permit sites to

learn a lot about you on
their site.

▪ third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state?
▪ at protocol endpoints: maintain state at

sender/receiver over multiple
transactions

▪ in messages: cookies in HTTP messages
carry state

Application Layer: 2-51

Web caches

▪ user configures browser to
point to a (local) Web cache

▪ browser sends all HTTP
requests to cache

• if object in cache: cache
returns object to client

• else cache requests object
from origin server, caches
received object, then
returns object to client

Goal: satisfy client requests without involving origin server

client

Web
cache

client

origin
server

Application Layer: 2-52

Web caches (aka proxy servers)

▪ Web cache acts as both
client and server

• server for original
requesting client

• client to origin server

Why Web caching?

▪ reduce response time for client
request
• cache is closer to client

▪ reduce traffic on an institution’s
access link

▪ Internet is dense with caches
• enables “poor” content providers

to more effectively deliver content

▪ server tells cache about
object’s allowable caching in
response header:

Application Layer: 2-53

Caching example

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access linkPerformance:

▪ access link utilization = .97
▪ LAN utilization: .0015

▪ end-end delay = Internet delay +
 access link delay + LAN delay
 = 2 sec + minutes + usecs

Scenario:
▪ access link rate: 1.54 Mbps
▪ RTT from institutional router to server: 2 sec
▪ web object size: 100K bits
▪ average request rate from browsers to origin

servers: 15/sec
▪ avg data rate to browsers: 1.50 Mbps

problem: large
queueing delays
at high utilization!

Application Layer: 2-54

Performance:

▪ access link utilization = .97
▪ LAN utilization: .0015

▪ end-end delay = Internet delay +
 access link delay + LAN delay
 = 2 sec + minutes + usecs

Option 1: buy a faster access link

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

Scenario:
▪ access link rate: 1.54 Mbps
▪ RTT from institutional router to server: 2 sec
▪ web object size: 100K bits
▪ average request rate from browsers to origin

servers: 15/sec
▪ avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)
Application Layer: 2-55

Performance:

▪ LAN utilization: .?
▪ access link utilization = ?

▪ average end-end delay = ?

Option 2: install a web cache

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

Scenario:
▪ access link rate: 1.54 Mbps
▪ RTT from institutional router to server: 2 sec
▪ web object size: 100K bits
▪ average request rate from browsers to origin

servers: 15/sec
▪ avg data rate to browsers: 1.50 Mbps

How to compute link
utilization, delay?

Cost: web cache (cheap!)

local web cache

Application Layer: 2-56

Calculating access link utilization, end-end delay
with cache:

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

local web cache

suppose cache hit rate is 0.4:
▪ 40% requests served by cache, with low

(msec) delay

 ▪ 60% requests satisfied at origin

• rate to browsers over access link
 = 0.6 * 1.50 Mbps = .9 Mbps

• access link utilization = 0.9/1.54 = .58 means
low (msec) queueing delay at access link

▪ average end-end delay:
= 0.6 * (delay from origin servers)
 + 0.4 * (delay when satisfied at cache)

= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

lower average end-end delay than with 154 Mbps link (and cheaper too!)

Application Layer: 2-57

Conditional GET

Goal: don’t send object if cache has
up-to-date cached version

• no object transmission delay (or use
of network resources)

▪ client: specify date of cached copy
in HTTP request
If-modified-since: <date>

▪ server: response contains no
object if cached copy is up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer: 2-58

HTTP/2

Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection

▪ server responds in-order (FCFS: first-come-first-served scheduling) to
GET requests

▪with FCFS, small object may have to wait for transmission (head-of-
line (HOL) blocking) behind large object(s)

▪ loss recovery (retransmitting lost TCP segments) stalls object
transmission

Application Layer: 2-59

HTTP/2

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:

▪ methods, status codes, most header fields unchanged from HTTP 1.1

▪ transmission order of requested objects based on client-specified
object priority (not necessarily FCFS)

▪ push unrequested objects to client

▪ divide objects into frames, schedule frames to mitigate HOL blocking

Key goal: decreased delay in multi-object HTTP requests

Application Layer: 2-60

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3

O4

objects delivered in order requested: O2, O3, O4 wait behind O1
Application Layer: 2-61

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3

O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

Application Layer: 2-62

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:

▪ recovery from packet loss still stalls all object transmissions
• as in HTTP 1.1, browsers have incentive to open multiple parallel

TCP connections to reduce stalling, increase overall throughput

▪ no security over vanilla TCP connection

▪ HTTP/3: adds security, per object error- and congestion-
control (more pipelining) over UDP
• more on HTTP/3 in transport layer

Application Layer: 2-63

	Default Section
	Slide 1

	Section 1
	Slide 2: Application layer: overview
	Slide 3: Example: how to run a network application?
	Slide 4: Example: how to run a network application?
	Slide 5: Example: how to run a network application?
	Slide 6: Application layer is an end-to-end layer
	Slide 7: Client-server paradigm
	Slide 8: Peer-peer architecture
	Slide 9: Processes communicating
	Slide 10: Processes communicating
	Slide 11: Addressing processes
	Slide 12: Addressing processes
	Slide 13: Sockets (interface) and Protocols
	Slide 14: An application-layer protocol defines:
	Slide 15: What transport service does an app need?
	Slide 16: Transport service requirements: common apps
	Slide 17: Internet transport protocols services (Details in Chapter 3)
	Slide 18: Internet applications, and transport protocols
	Slide 19: Application Layer: Overview
	Slide 20: Socket programming
	Slide 21: Socket programming
	Slide 22: Socket programming
	Slide 23: Socket programming
	Slide 24: Socket programming
	Slide 25: Socket programming with UDP
	Slide 26: Socket programming with UDP
	Slide 27: Socket programming with TCP

	Section 2
	Slide 28: Application layer: overview
	Slide 29: Web and HTTP
	Slide 30: Web and HTTP
	Slide 31: Web and HTTP
	Slide 32: Web and HTTP
	Slide 33: HTTP overview
	Slide 34: HTTP overview
	Slide 35: HTTP overview
	Slide 36: HTTP overview (continued)
	Slide 38: HTTP connections: two types
	Slide 39: HTTP connections: two types
	Slide 40: Non-persistent HTTP: response time
	Slide 41: Persistent HTTP (HTTP 1.1)
	Slide 42: HTTP request message
	Slide 43: HTTP request message
	Slide 44: Other HTTP request messages (omitted)
	Slide 45: HTTP response message
	Slide 46: HTTP response message
	Slide 47: HTTP response status codes
	Slide 48: Maintaining user/server state: cookies
	Slide 49: Maintaining user/server state: cookies
	Slide 50: Maintaining user/server state: cookies
	Slide 51: HTTP cookies: comments
	Slide 52: Web caches
	Slide 53: Web caches (aka proxy servers)
	Slide 54: Caching example
	Slide 55: Option 1: buy a faster access link
	Slide 56: Option 2: install a web cache
	Slide 57: Calculating access link utilization, end-end delay with cache:
	Slide 58: Conditional GET
	Slide 59: HTTP/2
	Slide 60: HTTP/2
	Slide 61: HTTP/2: mitigating HOL blocking
	Slide 62: HTTP/2: mitigating HOL blocking
	Slide 63: HTTP/2 to HTTP/3

