Wireshark Lab: Ll
TCP vs.1 \

Supplement to Computer Networking: A Top-Down
Approach, 8" ed., J.F. Kurose and K.W. Ross

AT
“Tell me and I forget. Show me and I remember. Involve me COMPUTER_ pes-
and I understand.” Chinese proverb ; NETWORKING

@ ATOP-DOWN APPROACH

Eighth Edition

© 2005-2021, J.F Kurose and K.W. Ross, All Rights Reserved 3 : =

In this lab, we’ll investigate the behavior of the celebrated TCP protocol in detail. We’ll
do so by analyzing a trace of the TCP segments sent and received in transferring a 150KB
file (containing the text of Lewis Carrol’s Alice’s Adventures in Wonderland) from your
computer to a remote server. We’ll study TCP’s use of sequence and acknowledgement
numbers for providing reliable data transfer; we’ll see TCP’s congestion control
algorithm — slow start and congestion avoidance — in action; and we’ll look at TCP’s
receiver-advertised flow control mechanism. We’ll also briefly consider TCP connection
setup and we’ll investigate the performance (throughput and round-trip time) of the TCP
connection between your computer and the server.

Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the
text!,

1. Capturing a bulk TCP transfer from your computer to a remote
server

Before beginning our exploration of TCP, we’ll need to use Wireshark to obtain a packet
trace of the TCP transfer of a file from your computer to a remote server. You’ll do so by
accessing a Web page that will allow you to enter the name of a file stored on your
computer (which contains the ASCII text of Alice in Wonderland), and then transfer the
file to a Web server using the HTTP POST method (see section 2.2.3 in the text). We’re
using the POST method rather than the GET method as we’d like to transfer a large
amount of data from your computer to another computer. Of course, we’ll be running
Wireshark during this time to obtain the trace of the TCP segments sent and received
from your computer.

1 References to figures and sections are for the 8" edition of our text, Computer Networks, A Top-down
Approach, 8" ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2020. Our website for this book is
http://gaia.cs.umass.edu/kurose_ross You’ll find lots of interesting open material there.

Do the following:

Start up your web browser. Go the http://gaia.cs.umass.edu/wireshark-

labs/alice.txt and retrieve an ASCII copy of Alice in Wonderland. Store this as a

.txt file somewhere on your computer.
Next go to http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-filel.html.
You should see a screen that looks like Figure 1.

Upload page for TCP Wireshark Lab X +

¢ @ © A& gaia.cs.umass.edufwireshark B so% e @ 1Y ¥ IN O @ =

Upload page for TCP Wireshark Lab
Computer Networking: A Top Down Approach, 6th edition
Copyright 2012 J.F. Kurose and K.W. Ross, All Rights Reserved

If you have followed the instructions for the TCP Wireshark Lab, you have already downloaded an ASCII copy of Alice and Wonderland
from http://gaia.cs.umass.edu/wireshark-labs/alice.txt and you also already have the Wireshark packet sniffer running and capturing
packets on your computer.

Click on the Browse button below to select the directory/file name for the copy of alice.txt that is stored on your computer.
Browse... No file selected.

Once you have selected the file, click on the "Upload alice.txt file" button below. This will cause your browser to send a copy of alice.txt
over an HTTP connection (using TCP) to the web server at gaia.cs.umass.edu. After clicking on the button, wait until a short message is
displayed indicating the the upload is complete. Then stop your Wireshark packet sniffer - you're ready to begin analyzing the TCP
transfer of alice.txt from your computer to gaia.cs.umass.edu!!

Upload alice.txt file

Figure 1: Page to upload the alice.txt file from your computer to
gaia.cs.umass.edu

Use the Browse button in this form to the file on your computer that you just
created containing Alice in Wonderland. Don’t press the “Upload alice.txt file”
button yet.

Now start up Wireshark and begin packet capture (see the earlier Wireshark labs
if you need a refresher on how to do this).

Returning to your browser, press the “Upload alice.txt file” button to upload the
file to the gaia.cs.umass.edu server. Once the file has been uploaded, a short
congratulations message will be displayed in your browser window.

Stop Wireshark packet capture. Your Wireshark window should look similar to
the window shown in Figure 2.

o Upload page for TCP Wireshark = X Upload page for TCP Wireshark | X

&« C @ © & gaiacs.umass.edujwireshark ««| + JIN O ® =

Congratulations!

You've now transferred a copy of alice.txt from your computer to
gaia.cs.umass.edu. You should now stop Wireshark packet capture. It's time to
start analyzing the captured Wireshark packets!

Figure 2: Success! You’ve uploaded a file to gaia.cs.umass.edu and have
hopefully captured a Wireshark packet trace while doing so.

If you are unable to run Wireshark on a live network connection, you can download a
packet trace that was captured while following the steps above on one of the author’s
computers?. In addition, you may well find it valuable to download this trace even if
you’ve captured your own trace and use it, as well as your own trace, when you explore
the questions below.

2. Afirst look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high-level
view of the trace.

Let’s start by looking at the HTTP POST message that uploaded the alice.txt file to
gaia.cs.umass.edu from your computer. Find that file in your Wireshark trace, and

expand the HTTP message so we can take a look at the HTTP POST message more
carefully. Your Wireshark screen should look something like Figure 3.

@ M tcp-wireshark-tracel1-1.pcapng
d m @ RO Re=2EF I = T
N | hitp [X] -+
No. Time Source Destination Protocol Length Info
+ 153 0.147682 192.168.86.68 128.119.245.12 HTTP 1451 POST /wireshark-labs/lab3-1-reply.htm HTTP/1.1 (text/plain)
179 0.192625 128.119.245.12 192.168.86.68 HTTP 843 HTTP/1.1 208 OK (text/html)
» Frame 153: 1451 bytes on wire (11688 bits), 1451 bytes captured (11688 bits) on interface en®, id @
» Ethernet II, Src: Apple_98:d9:27 (78:4f:43:98:d9:27), Dst: Google 89:0e:c8 (3c:28:6d:89:08e:c8)
» Internet Protocol Version 4, Src: 192.168.86.68, Dst: 128.119.245,12
» Transmission Control Protocol, Src Port: 55639, Dst Port: 88, Seq: 1520841, Ack: 1, Len: 1385
— » (106 Reassembled TCP Segments (153425 bytes): #4(1448), #5(1448), #6(1448), #9(1448), #10(1448), #11(1448), #12(1448), #14(1448), #15(1448), #2
* Hypertext Transfer Protocol

» POST /wireshark-labs/lab3-1-reply.htm HTTP/1.1\r\n
Host: gaia.cs.umass.edu\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.15; rv:85.8) Gecko/20100101 Firefox/85.0\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp,+*/*;q=0.8\r\n
Accept-Language: en-US,en;qg=@.5\r\n
Accept-Encoding: gzip, deflate\r\n
Content-Type: multipart/form-data; boundary 193950769437984536211154302391\r\n
Content-Length: 152359\r\n
Origin: http://gaia.cs.umass.edu\r\n
DNT: 1\r\n
Connection: keep-alive\r\n
Referer: http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-filel.html\rin
» [truncated]Cookie: _ga=GA1.2.539094814.1610028235; _fbp=b.1.1581132068304.462218827; _hjid=721bB07f-adab-4c94-9043-2eb27649f9ca; __utma=25{
. - - AR ‘
00000008 50 4f 53 54 20 2f 77 69 72 65 73 68 61 72 6b 2d POST /wi reshark-
2epeoe1e 6c 61 62 73 2f 6¢c 61 62 33 2d 31 2d 72 65 7@ 6c labs/lab 3-1-repl
00000028 79 2e 68 74 6d 20 48 54 54 50 2f 31 2e 31 @d @a y.htm HT TP/1.1--
00000030 48 6T 73 74 3a 20 67 61 69 61 2e 63 73 2e 75 6d Host: ga ia.cs.um
00000048 61 73 73 2e 65 64 75 0d @a 55 73 65 72 2d 41 67 ass.edu- -User-Ag
00000058 65 6e 74 3a 20 4d 6f 7a 69 6c 6c 61 2f 35 2e 3@ ent: Moz illa/5.@
00000068 20 28 4d 61 63 69 6e 74 6f 73 68 3b 20 49 6e 74 (Macint osh; Int
00000078 65 6c 20 4d 61 63 20 4f 53 20 58 20 31 30 2e 31 el Mac 0 S X 10.1
00000080 35 3b 20 72 76 3a 38 35 2e 30 29 20 47 65 63 6b 5; rviB5 .@) Geck
000000%0 6f 2f 32 30 31 30 30 31 30 31 20 46 69 72 65 66 0/201001 @1 Firef
000000a@ 6f 78 2f 38 35 2e 30 0d @a 41 63 63 65 70 74 3a 0x/85.0: -Accept:
000000ba 20 74 65 78 74 2f 68 74 6d 6¢c 2c 61 70 70 6c 69 text/ht ml,appli
000000ce@ 63 61 74 69 6 6e 2f 78 68 74 6d 6c 2b 78 6d 6c cation/x html+xml
000000d@ 2c 61 78 70 6c 69 63 61 74 69 6f Ge 2f 78 6d 6¢C sapplica tion/xml

Frame (1451 bytes) Reassembled TCP (153425 bytes) ‘

O 7 Tcp Segments (tcp.segments), 153,425 bytes Packets: 180 - Displayed: 2 (1.1%) Profile: Default

Figure 3: expanding the HTTP POST message that uploaded alice.txt from your computer
to gaia.cs.umass.edu

2 You can download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces-8.1.zip and
extract the trace file tcp-wireshark-tracel-1. This trace file can be used to answer this Wireshark lab
without actually capturing packets on your own. This trace was made using Wireshark running on one of
the author’s computers, while performing the steps indicated in this Wireshark lab. Once you’ve
downloaded a trace file, you can load it into Wireshark and view the trace using the File pull down menu,
choosing Open, and then selecting the trace file name.

There are a few things to note here:

The body of your application-layer HTTP POST message contains the contents of
the file alice.txt, which is a large file of more than 152K bytes. OK — it’s not that
large, but it’s going to be too large for this one HTTP POST message to be
contained in just one TCP segment!

In fact, as shown in the Wireshark window in Figure 3 we see that the HTTP
POST message was spread across 106 TCP segments. This is shown where the
red arrow is placed in Figure 3 [Aside: Wireshark doesn’t have a red arrow like
that; we added it to the figure to be helpful ©]. If you look even more carefully
there, you can see that Wireshark is being really helpful to you as well, telling you
that the first TCP segment containing the beginning of the POST message is
packet #4 in the particular trace for the example in Figure 3, which is the trace
tcp-wireshark-tracel-1 noted in footnote 2. The second TCP segment containing
the POST message in packet #5 in the trace, and so on.

Let’s now “get our hands dirty”” by looking at some TCP segments.

First, filter the packets displayed in the Wireshark window by entering “tcp”
(lowercase, no quotes, and don’t forget to press return after entering!) into the
display filter specification window towards the top of the Wireshark window.
Your Wireshark display should look something like Figure 4. In Figure 4, we’ve
noted the TCP segment that has its SYN bit set — this is the first TCP message in
the three-way handshake that sets up the TCP connection to gaia.cs.umass.edu
that will eventually carry the HTTP POST message and the alice.txt file. We’ve
also noted the SYNACK segment (the second step in TCP three-way handshake),
as well as the TCP segment (packet #4, as discussed above) that carries the POST
message and the beginning of the alice.txt file. Of course, if you’re taking your
own trace file, the packet numbers will be different, but you should see similar
behavior to that shown in Figures 3 and 4.

TCP SYN TCP SYNACK returned from gaia

® A tcp-wireshark-trace1-1.pcapng
e R QR esErw | E @ & & T

TCP segment to gaia with flrst 1448 bytes of alice.txt

B -] +
Time Source Destination Protocol Length Info
1 0.000000 192.168.86.68 128.119.245.12 TCP 78 55639 - ':‘ml-'v Win=65535 Len=0 MSS=1460 WS=64 TSval=725€
2 0.022414 128.119.245.12 192.168.86.68 TCP 74 80 - 55639 1)Seq=0 Ack=1 Win=28960 [Len=0 MSS=1460 SACK_
3 0.022505 192.168.86.68 128.119.245.12 TCP 66 55639 -+ 80 [ACR eq=1 Ack=1 Win=131712 Lepz=@ JSval=725607531 TS
4 0.024047 192.168.86.68 128.119.245.12 TCP 1514 55639 - 8@ [ACK] Seq=1 Ack=1 Win=13171 Len-1448 Sval 725607532
5 0.024048 192.168.86.68 128.119.245.12 TCP 1514 55639 - 80 [ACK] Seq=1449 Ack=1 Win=1317 en=1448 TSval=725607
6 0.024049 192.168.86.68 128.119.245.12 TCP 1514 55639 - 8@ [ACK] Seq=2897 Ack=1 Win=131712 Len=1448 TSval=725607
7 0.052671 128.119.245.12 192.168.86.68 TCP 66 80 - 55639 [ACK] Seq=1 Ack=1449 Win=31872 Len=0 TSval=391385139¢
8 0.052676 128.119.245.12 192.168.86.68 TcP 66 80 - 55639 [ACK] Seq=1 Ack=2897 Win=34816 Len=0 TSval=391385140¢
9 0.052774 192.168.86.68 128.119.245.12 TCP 1514 55639 - 80 [ACK] Seq=4345 Ack=1 Win=131712 Len=1448 TSval=725607
10 0.052775 192.168.86.68 128.119.245.12 TCP 1514 55639 - 8@ [ACK] Seq=5793 Ack=1 Win=131712 Len=1448 TSval=725607
11 0.052854 192.168.86.68 128.119.245.12 TCP 1514 55639 - 80 [ACK] Seq=7241 Ack=1 Win=131712 Len=1448 TSval=725607
12 0.052855 192.168.86.68 128.119.245.12 TcP 1514 55639 - 80 [ACK] Seq=8689 Ack=1 Win=131712 Len=1448 TSval=725607
13 0.053626 128.119.245.12 192.168.86.68 TCP 66 80 - 55639 [ACK] Seq=1 Ack=4345 Win=37760 Len=0 TSval=391385140¢
14 0.053710 192.168.86.68 128.119.245.12 TCcP 1514 55639 - 80 [ACK] Seq=10137 Ack=1 Win=131712 Len=1448 TSval=725607560 T
[Next sequence number: 1 (relative sequence number)]

Acknowledgment number: 0
Acknowledgment number (raw): @
1011 = Header Length: 44 bytes (11)

» Flags: 0x@02 (SYN)

0000

Window size value: 65535
[Calculated window size: 65535]
Checksum: @xaled [unverified]
[Checksum Status: Unverified]

3c 28 6d 89 0e c8 78 4f 43 98 d9 27 08 00 45 00 <(m---x0 C:-' ‘E
00 40 00 00 40 00 40 06 ae 47 cO a8 56 44 80 77 @ @@ ‘G -VD'w
f5 @c d9 57 00 50 fc 86 22 e3 00 00 00 00 b 02 WaPre: %

ff ff al e4 00 00 02 04 05 b4 01 03 03 06 01 01

08 0a 2b 3f e4 55 00 00 00 00 04 02 00 00 +7-U

Figure 4: TCP segments involved in sending the HTTP POST message (including the

file alice.txt) to gaia.cs.umass.edu

Answer the following questions?, either from your own live trace, or by opening the
Wireshark captured packet file tcp-wireshark-tracel-1 in
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces-8.1.zip

1.

2.

Since

What is the IP address and TCP port number used by the client computer (source)
that is transferring the alice.txt file to gaia.cs.umass.edu? To answer this
question, it’s probably easiest to select an HTTP message and explore the details
of the TCP packet used to carry this HTTP message, using the “details of the
selected packet header window” (refer to Figure 2 in the “Getting Started with
Wireshark™ Lab if you’re uncertain about the Wireshark windows).

What is the IP address of gaia.cs.umass.edu? On what port number is it sending
and receiving TCP segments for this connection?

this lab is about TCP rather than HTTP, now change Wireshark’s “listing of

captured packets” window so that it shows information about the TCP segments
containing the HTTP messages, rather than about the HTTP messages, as in Figure 4

3 For the author’s class, when answering the following questions with hand-in assignments, students

someti

mes need to print out specific packets (see the introductory Wireshark lab for an explanation of how

to do this) and indicate where in the packet they’ve found the information that answers a question. They do
this by marking paper copies with a pen or annotating electronic copies with text in a colored font. There
are also learning management system (LMS) modules for teachers that allow students to answer these
questions online and have answers auto-graded for these Wireshark labs at

http://gaia.cs.umass.edu/kurose ross/Ims.htm

above. This is what we’re looking for—a series of TCP segments sent between your
computer and gaia.cs.umass.edu!

3. TCP Basics
Answer the following questions for the TCP segments:

3. What is the sequence number of the TCP SYN segment that is used to initiate the
TCP connection between the client computer and gaia.cs.umass.edu? (Note: this
is the “raw” sequence number carried in the TCP segment itself; it is NOT the
packet # in the “No.” column in the Wireshark window. Remember there is no
such thing as a “packet number” in TCP or UDP; as you know, there are sequence
numbers in TCP and that’s what we’re after here. Also note that this is not the
relative sequence number with respect to the starting sequence number of this
TCP session.). What is it in this TCP segment that identifies the segment as a
SYN segment? Will the TCP receiver in this session be able to use Selective
Acknowledgments (allowing TCP to function a bit more like a “selective repeat”
receiver, see section 3.4.5 in the text)?

4. What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu
to the client computer in reply to the SYN? What is it in the segment that
identifies the segment as a SYNACK segment? What is the value of the
Acknowledgement field in the SYNACK segment? How did gaia.cs.umass.edu
determine that value?

5. What is the sequence number of the TCP segment containing the header of the
HTTP POST command? Note that in order to find the POST message header,
you’ll need to dig into the packet content field at the bottom of the Wireshark
window, looking for a segment with the ASCII text “POST” within its DATA
field*>. How many bytes of data are contained in the payload (data) field of this
TCP segment? Did all of the data in the transferred file alice.txt fit into this single
segment?

6. Consider the TCP segment containing the HTTP “POST” as the first segment in
the data transfer part of the TCP connection.

e At what time was the first segment (the one containing the HTTP POST) in
the data-transfer part of the TCP connection sent?

e At what time was the ACK for this first data-containing segment received?

e What is the RTT for this first data-containing segment?

e What is the RTT value the second data-carrying TCP segment and its ACK?

e What isthe EstimatedRTT value (see Section 3.5.3, in the text) after the
ACK for the second data-carrying segment is received? Assume that in
making this calculation after the received of the ACK for the second segment,

4 Hint: this TCP segment is sent by the client soon (but not always immediately) after the SYNACK
segment is received from the server.

> Note that if you filter to only show “http” messages, you’ll see that the TCP segment that Wireshark
associates with the HTTP POST message is the last TCP segment in the connection (which contains the
text at the end of alice.txt: “THE END”) and not the first data-carrying segment in the connection.
Students (and teachers!) often find this unexpected and/or confusing.

that the initial value of Est imatedRTT is equal to the measured RTT for the
first segment, and then is computed using the EstimatedRTT equation on

page 242, and a value of o = 0.125.
Note: Wireshark has a nice feature that allows you to plot the RTT for
each of the TCP segments sent. Select a TCP segment in the “listing of
captured packets” window that is being sent from the client to the
gaia.cs.umass.edu server. Then select: Statistics->TCP Stream Graph-
>Round Trip Time Graph.

7. What is the length (header plus payload) of each of the first four data-carrying
TCP segments?®

8. What is the minimum amount of available buffer space advertised to the client by
gaia.cs.umass.edu among these first four data-carrying TCP segments’? Does the
lack of receiver buffer space ever throttle the sender for these first four data-
carrying segments?

9. Are there any retransmitted segments in the trace file? What did you check for (in
the trace) in order to answer this question?

10. How much data does the receiver typically acknowledge in an ACK among the
first ten data-carrying segments sent from the client to gaia.cs.umass.edu? Can
you identify cases where the receiver is ACKing every other received segment
(see Table 3.2 in the text) among these first ten data-carrying segments?

11. What is the throughput (bytes transferred per unit time) for the TCP connection?
Explain how you calculated this value.

4. TCP congestion control in action

Let’s now examine the amount of data sent per unit time from the client to the server.
Rather than (tediously!) calculating this from the raw data in the Wireshark window,
we’ll use one of Wireshark’s TCP graphing utilities—Time-Sequence-Graph(Stevens)—to
plot out data.

e Select a client-sent TCP segment in the Wireshark’s “listing of captured-packets”
window corresponding to the transfer of alice.txt from the client to
gaia.cs.umass.edu. Then select the menu: Statistics->TCP Stream Graph-> Time-
Sequence-Graph(Stevens®). You should see a plot that looks similar to the plot in
Figure 5, which was created from the captured packets in the packet trace tcp-
wireshark-tracel-1. You may have to expand, shrink, and fiddle around with the
intervals shown in the axes in order to get your graph to look like Figure 5.

6 The TCP segments in the tcp-wireshark-trace1-1 trace file are all less than 1480 bytes. This is because the
computer on which the trace was gathered has an interface card that limits the length of the maximum IP
datagram to 1500 bytes, and there is a minimum of 40 bytes of TCP/IP header data. This 1500-byte value is
a fairly typical maximum length for an Internet IP datagram.

" Give the Wireshark-reported value for “Window Size Value” which must then be multiplied by the
Window Scaling Factor to give the actual number of buffer bytes available at gaia.cs.umass.edu for this
connection.

8 William Stevens wrote the “bible” book on TCP, known as TCP Illustrated.

Sequence Numbers (Stevens) for 192.168.86.68:55639 -» 128.119.245.12:80

tcp-wireshark-tracel-1.pcapng

80000 - J

{

@
— 60000 | i
(4]
Q0
2 $
=]
pd
w {
2 40000 | H
o H
3
o
(3]
w
20000 |
0L ‘ SR S— . ‘
-01 0 0.1 0.2
Time (s)

Figure 5: A sequence-number-versus-time plot (Stevens format) of TCP segments.

Here, each dot represents a TCP segment sent, plotting the sequence number of
the segment versus the time at which it was sent. Note that a set of dots stacked
above each other represents a series of packets (sometimes called a “fleet” of
packets) that were sent back-to-back by the sender.

Answer the following question for the TCP segments in the packet trace tcp-wireshark-
tracel-1 (see earlier footnote?)

12. Use the Time-Sequence-Graph(Stevens) plotting tool to view the sequence
number versus time plot of segments being sent from the client to the
gaia.cs.umass.edu server. Consider the “fleets” of packets sent around t = 0.025, t
=0.053,t=0.082 and t = 0.1. Comment on whether this looks as if TCP is in its
slow start phase, congestion avoidance phase or some other phase. Figure 6 shows
a slightly different view of this data.

13. These “fleets” of segments appear to have some periodicity. What can you say
about the period?

14. Answer each of two questions above for the trace that you have gathered when
you transferred a file from your computer to gaia.cs.umass.edu

Sequence Number (B)

150000

125000

100000

75000

50000

25000

Sequence Numbers (Stevens) for 192.168.86.68:55639 - 128.119.245.12:80

tcp-wireshark-tracel1-1.pcapng

1

.

i

PO, |
H
Fe el

0 0.05 01 0.15
Time (s)

Figure 6: Another view of the same data as in Figure 5.

