
1 
 

Programming	Assignment	#2:	NS-3	Simulator	

University	at	Buffalo-Spring	2025	

CSE	4/589	Modern	Networking	Concepts	
	

Project	Overview	

This	project	is	designed	to	review	concepts	of	the	CSE4/589:	Modern	Networking	Concepts	
course	 such	 as	 routing,	 congestion	 control,	 delays,	 and	 network	 quality	 of	 Service	 (QoS)	
parameters	 through	 the	NS-3	 simulation	 tool.	 NS-3	 is	 a	 powerful	 discrete-event	 network	
simulator	for	Internet	systems,	targeted	primarily	for	research	and	educational	use.	NS-3	is	
free,	open-source	software,	licensed	under	the	GNU	GPLv2	license.	You	can	Sind	more	details	
about	this	tool	on	its	website	and	comprehensive	tutorial	Sile.	

Deliverables	

Programming	assignment	#2	includes	four	tasks	and	a	bonus	task	with	different	deliverables.	
You	will	Sind	more	details	about	the	deliverables	of	each	task	in	the	project	task	section.	You	
should	submit	your	assignment	as	a	zip	Sile	containing	the	following	items	to	Brightspace.	

- Simulated	Sile:	A	C++	Sile	or	a	Python	Sile	as	your	simulated	scenario	through	NS-3.	
- Project	report: A	PDF	Sile	as	a	report	showing	your	simulation	results	and	discussions.	
- Project	demo:	A	video	Sile	showing	your	project	presentation.	

You	can	Sind	details	of	each	item	in	the	following	sections.	This	is	optional	and	up	to	you	if	we	
have	not	provided	 instructions	or	guidelines	about	 them	on	 this	 Sile	 such	as	deliverables,	
page	limitations,	report	structure,	and	simulation	parameters.	

Notes:	

§ We	will	 run	 your	 simulated	 project	 on	 our	 computer	 to	 validate	 your	 project	 and	
check	the	similarity	of	your	code.	Therefore,	you	should	highlight	your	NS-3	version	
and	Ubuntu	version	in	your	project	report	Sile.		

§ Your	 report	 should	 be	 typed	 and	 cover	 all	 requested	 concepts,	 handwritten	
assignments	will	not	be	accepted.	

§ In	 the	project	demo,	you	should	 show	Task	1	and	Task	4	 running	on	your	 system.	
Record	 a	 15-20-minute	 video	 and	 present	 your	 work.	 Each	 team	member	 should	
participate	in	the	presentation	process,	your	webcam	must	be	turned	on,	and	each	
presenter	must	Sirst	introduce	themselves.		

§ 	

https://www.nsnam.org/
https://www.nsnam.org/docs/release/3.42/tutorial/ns-3-tutorial.pdf


2 
 

General	Notes:	

§ You	 should	 adhere	 to	Academic	 Integrity.	 You	will	 get	 an	 “F”	 for	 the	 course	 if	 you	
violate	the	academic	integrity.	See	the	course	syllabus	for	more	details.	

§ Team	members	are	equally	responsible	for	any	AI	violation.	Therefore,	do	not	let	your	
teammate	violate	AI	policy.	

§ For	individual	assignments,	students	who	share	their	work	are	equally	responsible	
for	AI	violations	as	those	receiving	the	material.	

§ See	the	course	syllabus	for	the	late	policy	of	PA#2.	
§ Programming	 assignment	 #2	 can	 be	 conducted	 either	 individually	 or	 with	

a	maximum	of	two	students.		
§ Although	it	is	recommended	to	install	the	latest	version	of	NS-3	(NS-3.43)	and	Ubuntu	

24.04.01,	you	can	also	install	older	versions	of	NS-3,	such	as	NS-3.42	or	NS-3.41,	and	
older	version	of	Ubuntu	such	as	22.04.	It	should	be	noted	that	you	cannot	conduct	PA	
#2	through	NS-2	for	the	reasons	given	on	page	12	of	the	tutorial	Sile.		

§ Member	#1	must	submit	the	report,	one	submission	per	team.		
§ Your	teammate	in	this	programming	assignment	may	be	different	than	your	teammate	

in	PA#1.	Moreover,	undergraduate	and	graduate	students	can	work	jointly	but,	in	this	
case,	you	should	meet	the	deadline	of	graduate	teams.			

§ Name	all	Siles	with	team	members’	UBIT	such	as	UBITmember1_UBITmember2.zip.	
§ PA#2	will	be	graded	out	of	100.	Bonus	task	adds	10	extra	points	to	your	PA2's	grade.	

NS-3	Installation	Guidelines		

NS-3	can	be	installed	on	Linux,	FreeBSD,	and	MacOS	operating	systems.	According	to	Table	1	
of	 the	 installation	 guidelines,	 some	 features	 of	 ns-3	 are	 not	 supported	 by	 FreeBSD	 and	
MacOS,	therefore,	it	is	better	to	install	it	on	Linux.	You	can	Sind	installation	guidelines	in	the	
following	links.	

1) How	to	install	ns3	in	Ubuntu	|	ns-3.41	in	Ubuntu	22.04		
 

Note:	The	provided	steps	in	the	above	video	can	be	utilized	to	install	the	latest	version	of	NS-
3.43	(released	on	October	9,	2024)	on	the	 latest	version	of	Ubuntu	24.04.01	(released	on	
August	29,	2024). At	the	time	of	writing	this	Sile,	ns-3.42	was	installed	on	my	system,	so	you	
will	see	this	version	in	the	screenshots	and	commands,	which	can	be	replaced	by	another	
version	on	your	system.	

2) ns-3	Installation	Guide	

In	case	of	using	MacOS	or	Windows,	you	need	Sirst	 to	 install	Ubuntu	on	your	system.	You	
could	Sind	many	online	resources,	such	as	

https://www.nsnam.org/docs/release/3.42/tutorial/ns-3-tutorial.pdf
https://www.nsnam.org/wiki/Installation
https://www.youtube.com/watch?v=BpfF-ZaFSJ8
https://www.youtube.com/watch?v=BpfF-ZaFSJ8
https://www.nsnam.org/docs/installation/html/


3 
 

How	To	Install	Ubuntu	On	M1	Mac	

How	to	Install	Ubuntu	on	VirtualBox	in	Windows	

In	general,	you	can	Sind	more	details	about	the	installation	of	NS-3	on	Windows	or	MacOS	in	
the	following	link	in	case	of	any	installation	problems.		

Installation	Guidelines	for	macOS	and	Windows		

After	installation,	as	explained	in	the	installation	video	and	on	page	45	of	the	tutorial	Sile,	
make	sure	that	the	shared	library	paths	are	set	correctly	and	that	the	libraries	are	available	
at	run	time	by	running	the	following	scripts.	Therefore,	you	can	check	the	working	of	ns-3	on	
your	system	by	running	a	few	simple	scripts	located	on	the	“~ns-3.42/examples/tutorial/”	
directory	such	as	!irst.cc,	second.cc,	and	hello-simlator.cc.	

In	 general,	 $	 ./ns3	 run	 <ns-!ilename>	 command	 can	 be	 utilized	 to	 run	 a	 ns-3	 code.	 This	
command	should	be	run	in	the	“~/ns-3.42”	directory	because	ns-3	has	been	installed	in	this	
directory.	 Moreover,	 in	 this	 command,	 <ns-Silename>	 should	 be	 written	 without	 any	
extension,	such	as	.cc	or	.py,	as	you	see	in	the	following	examples.	For	example,	to	run	the	
Sirst.cc	script	just	write	!irst	instead	of	!irst.cc.	

$	./ns3	run	Sirst	

You	 will	 get	 the	 results	 as	 follows.	 You	 can	 Sind	 explanations	 of	 these	 outputs	 and	
walkthrough	for	the	Sirst.cc	script	on	page	59	and	on	page	51	of	the	tutorial	Sile,	respectively.		

				

Note:	In	this	command,	just	the	name	of	the	Sile	(!irst)	is	written	because	there	is	only	one	
ns-Sile	entitled	“!irst”	in	~/ns-3.42	directory,	if	there	are	several	codes	with	the	same	name	
in	different	sub-directories	you	should	clarify	the	sub-directory	of	the	Sile	in	your	command.	
For	example,	$	./ns3	run	scratch/Sirst	or	$	./ns3	run	examples/tutorial/Sirst	

	

$	./ns3	run	second	

You	 will	 get	 the	 results	 as	 follows.	 You	 can	 Sind	 explanations	 of	 these	 outputs	 and	
walkthrough	for	the	second	script	on	page	81	and	on	page	77	of	the	tutorial	Sile,	respectively.		

https://www.youtube.com/watch?v=1WWj6qoWhJw
https://www.youtube.com/watch?v=DhVjgI57Ino
https://www.nsnam.org/wiki/Installation#Installation


4 
 

	

$	./ns3	run	hello-simulator	

You	should	get	the	results	as	follows.	

	

If	you	have	got	similar	outputs	without	any	error,	it	means	that	ns-3	libraries	and	required	
tools	are	installed	on	your	system.	If	you	did	not	get	the	desired	outputs,	you	can	refer	to	
page	44	 of	 the	tutorial	 Sile,	 or	 as	 a	 suggestion,	 run	 the	 following	 command	 to	 enable	 the	
examples.	

$	./ns3	conSigure	--enable-examples	--enable-tests	

Then	run	the	following	command	to	build	ns3.	

$	./ns3	build	

Note:	There	is	a	Phyton-based	test	script	entitled	“test.py”	in	the	“~/ns-3.42”	directory	that	
can	be	used	to	check	installed	functions	and	libraries	and	their	conSigurations.	You	can	run	it	
through	$./test.py	command	and	check	whether	all	components	pass	or	fail.	You	should	get	
results	as	follows.	

	

The	status	of	each	component	 is	 represented	on	each	 line,	and	 the	 last	 line	of	 the	output	
conSirms	that	all	769	components	are	correctly	installed	and	conSigured	on	the	system. The	
number	of	components	can	vary	on	your	system,	but	they	must	all	be	passed	correctly.	

You	evaluated	installed	libraries	and	their	conSigurations	through	three	simple	scripts,	i.e.,	
Sirst.cc,	second.cc,	and	hello-simulator.cc.	These	scripts	are	located	in	the	example/tutorial	
directory,	also	example	directory	consists	of	several	sub-directories	such	as	 ipv6,	routing,	
wireless,	and	socket	including	a	lot	of	useful	ns-3	codes.	You	can	open	each	script	and	analyze	



5 
 

its	code	in	your	favorite	editor	such	as	Visual	Studio	or	gedit.	You	can	Sind	explanations	of	all	
built-in	functions,	classes,	and	APIs	of	ns-3	in	its	Doxygen.	

Note:	If	you	want	to	analyze/change	a	script	such	as	Sirst.cc,	due	to	two	reasons	it	is	essential	
to	copy	it	to	“~/ns-3.42/scratch/”	directory	and	work	on	the	copied	Sile.	Firstly,	the	original	
code	in	the	“~/examples/tutorial/”	directory	will	be	kept	safe,	as	explained	on	page	59	of	the	
tutorial	Sile.	Secondly,	you	cannot	compile	some	original	code	in	the	tutorial	directory	if	you	
add	some	new	classes	or	functions.	

	Visualization	of	Projects	

In	the	previous	section,	you	were	able	to	run	the	two	simple	scripts	and	get	the	simulation	
result	as	text	printed	on	your	screen.	Moreover,	you	can	visualize	the	simulated	scenarios	
through	NetAnim	as	a	visualizer	tool.	

For	 example,	 Sirst.cc	 script	 just	 simulated	 a	 point-to-point	 network	 including	 two	 nodes,	
which	its	simple	topology	is	presented	at	the	beginning	of	its	source	code.	You	can	follow	the	
following	steps	(on	Sirst.cc	script)	to	visualize	it	through	NetAnim.	

Step	1:	ModiLication	on	the	Lirst.cc	to	generate	an	XML	Lile.	

In	this	step,	you	must	add	a	few	simple	snippets	to	the	Sirst.cc	to	create	an	XML	Sile	that	can	
be	opened	 through	NetAnim.	Firstly,	add	#include	“ns/netanim-module.h”	 to	 the	 includes	
statements	 section.	Then,	 add	 the	following	 snippet	 exactly	before	 the	 simulator	 function	
(Simulator::Run();	).	

	

The	Sirst	line	declares	the	name	of	the	XML	Sile	that	will	be	generated.	The	second	two	lines	
declare	the	positions	of	two	network	nodes.	According	to	this	snippet,	node	0,	the	client	of	
this	scenario,	will	be	located	at	(x=10,	y=10)	and	node	1,	the	server	of	this	scenario,	will	be	
located	at	(x=2,	y=20).	

The	“Sirst1.xml”	will	be	created	in	the	“…/ns-3.42”	directory	if	you	run	the	code	as	follows.	
Note:	As	you	see,	I	copied	Sirst.cc	to	the	scratch	directory,	renamed	it	to	Sirst1.cc,	and	added	
the	mentioned	pieces	of	code	to	it.	

https://www.nsnam.org/docs/release/3.15/doxygen/index.html


6 
 

	

Note:	The	printed	result	includes	two	parts.	The	Sirst	four	lines	conSirm	that	an	XML	Sile	has	
been	created,	if	you	do	not	have	the	same	output	on	your	screen,	it	means	that	you	need	to	
check	the	code	and	modules	installed	on	your	system.	It	should	be	noted	that	these	four	lines	
are	warnings	and	do	not	affect	your	execution.	The	next	four	lines	clarify	four	different	events	
of	your	simulation.		

If	you	have	a	problem	in	the	creation	of	.xml	Sile	or	in	opening	it	by	NetAnim,	as	a	
suggestion	check/install	the	following	libraries	If	you	are	sure	that	everything	is	in	order.	

$	sudo	apt	install	libxml2	

$	sudo	apt	install	libxcb-cursor-dev	

Moreover,	you	can	check	available	updates	through	the	$	sudo	apt	update	or	$	sudo	apt-get	
update	commands,	and	if	any	modules	are	not	installed,	upgrade	your	system	with	$	sudo	apt	
upgrade	command.	

Step	2:	Executing	NetAnim	

NetAnim	 is	 a	 visualizer	 tool	 that	 is	 automatically	 installed	 through	 the	 ns-allinone-3.42	
package.	 You	 can	 Sind	 installed	 NetAnim	 in	 the	 “~/ns-allinone-3.42/netanim-3.109”	
directory.	Run	it	through	$	./NetAnim	command	in	the	mentioned	directory	and	you	will	see	
the	NetAnim	tool	in	the	following	Sigure.	

	

	



7 
 

Step	3:	Opening	the	XML	Lile	through	NetAnim	

You	can	open	(top-left	 icon)	 the	generated	xml	 Sile	 (Sirst1.xml	 in	 this	example)	and	run	 it	
through	the	play	icon	and	see	the	simulation	scenario.	At	Sirst,	the	network	nodes	are	placed	
randomly	in	the	grid	area,	but	they	will	be	relocated	to	the	determined	positions	after	playing	
the	simulation.	As	a	simple	graphic	tool,	you	can	do	simple	settings	such	as	zoom-in,	zoom-
out,	adjusting	simulation	speed,	changing	node	size,	and	checking	transmission	of	packets	at	
different	 time	 stamps,	 also	 you	 can	 check	 the	statistics	 of	 nodes	 under	 stats	 tab,	 and	
transmission	process	over	time	under	packets	tab.	

Simulation	analysis	through	TraceMetrics	

TraceMetrics	is	an	open-source	and	Java-based	tool	for	analyzing	the	trace	Siles	that	can	be	
generated	in	the	simulation	of	ns-3	codes.	Simple	scenarios	usually	do	not	produce	extensive	
results	 and	 can	be	easily	 evaluated	and	analyzed,	while	 for	 the	evaluation	of	 complicated	
scenarios,	you	need	an	effective	tool	to	classify	and	sort	the	simulation	results.	TraceMetrics	
is	 an	 effective	 graphical	 tool	 for	 this	 purpose	 to	 analyze	 complicated	 simulation	 results,	
calculate	useful	metrics,	and	quick	performance	measurements.	You	can	follow	the	following	
steps	(on	Sirst.cc	script)	to	analyze	the	simulation	results	through	TraceMetrics.	

Step	1:	ModiLication	on	the	Lirst.cc	to	generate	a	trace	Lile.	

You	can	add	two	following	commands	before	the	simulator	function	(Simulator::Run();)	to	
create	a	trace	Sile	including	logs	in	the	Ascii	format.	

	

The	Sirst	line	of	code	creates	an	object	entitled	ascii	of	type	AsciiTraceHelper	class.	The	second	
line	 enables	 the	creation	 of	 a	trace	 Sile	 on	 the	 point-to-point	 channel	 between	 client	 and	
server	to	generate	a	trace	Sile	entitled	“Sirst2.tr”.		

Now,	if	you	run	the	code	you	can	see	a	trace	Sile	entitled	!irst2.tr	in	the	“~/ns-3.42”	directory.	
You	can	open	it	through	text	editor	tools	and	see	the	simulation	results	in	ASCII	format.	You	
will	see	a	lot	of	details	about	the	simulation	results	of	Sirst.cc	and	you	will	need	an	interpreter	
to	parse	this	ASCII	information	and	display	it	in	an	appropriate	style.	

Step	2:	Install	TraceMetrics	to	analyze	the	trace	Lile.	

You	can	download	the	latest	version	of	TraceMetrics,	tracemetrics-1.4.0,	through	this	link.		
Once	downloaded,	copy	it	to	the	Ubuntu	root,	unzip	it,	and	you	will	see	tracemetrics.jar,	an	
execution	Sile,	in	the	tracemetrics-1.4.0	directory.	This	is	a	Java-based	Sile,	you	can	install	it	
through	the	following	command	if	you	do	not	have	it	on	your	system	

https://sourceforge.net/projects/tracemetrics/


8 
 

$	sudo	apt	install	default-jdk	

Step	3:	Open	TraceMetrics	and	analyze	the	trace	Lile.	

You	 can	 open	 TraceMetrics	 through	 the	 following	 command	 that	 should	 be	 run	 in	 the	
~/tracemetrics-1.4.0/	directory.	

$	java	-jar	tracemetrics.jar		

You	 can	 select	 and	 open	 the	 trace	 Sile	 and	 get	 classiSied	 information	 about	 the	 overall	
simulation	results,	network	nodes,	throughput,	and	UDP	streams.		

	

	

Simulation	analysis	through	Wireshark	

There	is	another	way	to	create	trace	Siles	and	analyze	them	through	Wireshark.	In	this	case,	
you	can	generate	trace	Siles	in	.pcap	format,	which	pcap	stands	for	packet	capture,	including	
all	information	of	captured	packets.	The	pcap	format	packets	can	be	analyzed	through	trafSic	
trace	 analyzers	 such	 as	 Wireshark	 and	 tcpdump.	 Let’s	 take	 a	 look	 at	 the	 second	 script	
(second.cc)	and	follow	the	following	steps	to	analyze	it	through	Wireshark.	

Step	1:	ModiLication	on	the	second.cc	to	create	a	.pcap	Lile.	

After	copying	it	to	the	scratch	directory,	you	can	start	analyzing	or	modifying	it.	You	can	
Sind	the	following	two	commands	in	this	script.

	



9 
 

The	Sirst	line	of	code	enables	the	creation	of	a	.pcap	trace	Sile	for	the	point-to-point	part	of	
the	network,	 recording	 in	a	 Sile	entitled	 second.	The	second	 line	enables	 the	creation	of	a	
.pcap	trace	Sile	just	for	the	node	having	index	one,	meaning	the	second	node	of	the	LAN	part	
of	the	network,	recording	in	the	Sile	entitled	second.	As	an	example,	you	can	change	the	above	
snippet	as	follows	to	capture	the	packets	in	different	Siles.	

	

Note:	In	contrast	to	the	NetAnim	and	trace	Siles,	where	we	had	to	deSine	type	extension	in	the	
naming	of	the	output	Sile	such	as	“Sirst.xml”	or	“Sirst.tr”,	no	need	to	add	.pcap	extension	in	
packet	capturing	Siles.	

After	running	second.cc	you	can	Sind	four	pcap	Siles,	i.e.,	p2p-0-0.pcap,	p2p-1-0.pcap,	csma1-
2-0.pcap,	and	csma1-4-0.pcap	corresponding	to	captured	packets	of	node	0-device	0	of	point-
to-point	part,	node	1-device-0	of	point-to-point	part,	second	node	of	LAN	part-device	0,	and	
fourth	node	of	LAN	part-device	0,	respectively.	 In	other	words,	p2p-1-0	includes	captured	
packets	of	device	#0	(NIC	#0	or	Sirst	NIC)	of	node	#1	(or	second	node)	of	the	point-to-point	
part.		

Step	2:	Open	Wireshark	and	analyze	the	pcap	Liles.	

Wireshark	is	a	packet	analyzer	tool	that	is	automatically	installed	through	the	ns-allinone-
3.42	package.	You	can	run	it	inside	the	“~/ns-3.42/”	directory	as	follows.		

$	~/ns-allinone-3.42/ns-3.42/	wireshark	<pcap	!ile	name>	

You	can	see	 the	Wireshark	window	as	 follows.	You	can	analyze	 the	captured	packets	 like	
Wireshark	Lab	assignments.	

	



10 
 

Step	3:	Utilizing	tcpdump	for	analyzing	the	pcap	Liles.	

The	tcpdump	is	another	tool	to	analyze	the	pcap	Siles.	This	is	one	of	the	built-in	tools	of	ns-3	
that	 can	be	 run	 in	 the	 terminal	 as	 follows.	You	 can	 Sind	more	details	 about	 the	 following	
output	on	page	82	of	the	tutorial	Sile.		

	

Creation	of	graph	through	Gnuplot	

In	general,	graphs	and	charts	can	organize	and	display	complex	data	and	make	it	easier	for	
people	to	understand.	For	this	reason,	sometimes	we	would	like	to	create	a	graph	or	chart	
for	obtained	simulation	results.	Although	you	can	extract	the	required	data	from	Log	Siles,	
TraceMetrics,	or	Wireshark	and	plot	a	graph	by	mathematical	and	graphical	 tools	such	as	
Excel	or	MATLAB,	you	can	directly	plot	a	chart	 through	 the	Gnuplot	 tool.	There	are	 three	
methods	to	plot	a	graph	through	Gnuplot	as	follows.	As	explained	in	the	following	video,	Sirst	
install	the	gnuplot	on	your	system	and	plot	a	few	simple	functions.	

Method	I)	Manual	data	collection	and	manual	plotting	

You	can	manually	extract	the	data	from	simulation	results	and	create	a	data	Sile	and	a	code	
Sile,	and	then	create	a	graph	through	terminal	commands.	You	can	Sind	the	guidelines	in	the	
following	links.	

OfLicial	gnuplot	documentation	

Gnuplot	for	plotting	data	-	NS3	Tutorial	5	

Likewise,	 in	 the	 following	 video,	 you	 can	 Sind	 instructions	 on	 the	creation	 of	 a	histogram	
through	Gnuplot.	

Histogram	using	Gnuplot	

Method	II)	Automatic	data	collection	and	manual	plotting	

Following	the	instructions	of	the	above	links,	you	can	manually	create	a	data	Sile,	a	simple	
code	Sile,	and	plot	your	desired	chart.	This	technique	will	be	time-consuming	if	the	simulation	
results	are	extensive,	and	even	it	is	mistake-prone	due	to	manual	data	collection.	Therefore,	
you	can	automate	data	collection,	although	plotting	is	still	manual.	Automatic	data	collection	
or	creation	of	a	.dat	Sile	can	be	done	through	two	methods.	

http://www.gnuplot.info/docs_5.4/Gnuplot_5_4.pdf
https://www.youtube.com/watch?v=Y37DTIF-kRQ
https://www.youtube.com/watch?v=ySnMWJxEalI


11 
 

		a)	Through	terminal	commands	

Let’s	run	 the	 Sifth.cc	script	and	see	 the	results	on	 the	screen.	You	will	get	a	 lot	of	printed	
messages	 on	 your	 screen	 if	 you	 run	 Sifth.cc.	 The	 printed	 outputs	 show	 the	 new	 size	 of	
congestion	window	(cwnd),	 the	moment	of	 changing	 cwnd,	 and	 the	moment	of	dropping	
packets	 (RxDrop).	You	can	easily	record	 these	outputs	 in	a	 .dat	 Sile	 through	 the	 following	
terminal	command	and	adding	options	to	the	run	command.	

$	./ns3	run	Sifth	>	<Sile	name>.dat		2>&1		

This	command	creates	a	.dat	Sile	inside	the	~/ns-3.42/	directory	with	the	<Sile	name>	you	
have	deSined	in	the	above	command	that	consists	of	all	the	printed	outputs,	you	can	check	it	
by	a	text	editor	tool.	It	should	be	noted	that	the	data	Sile	is	created	automatically,	but	if	you	
want	 to	 plot	 it	 through	 Gnuplot	 you	 need	 to	 run	 several	 commands	 in	 the	 Gnuplot	
environment,	as	you	see	on	page	127	of	the	tutorial	Sile.	

			b)	Through	AsciiTraceHelper	and	PcapHelper		

You	are	familiar	with	AsciiTraceHelper	and	PcapHelper	classes	to	create	a	.tr	trace	Sile	and	a	
.pcap	capturing	Sile.	In	the	Sifth.cc	script	both	the	cwnd	and	RxDrop	values	are	saved	in	a	.dat	
Sile	that	can	be	used	for	further	processes,	while	the	sixth.cc	script	records	these	values	in	
different	Siles.	The	old	value	and	new	value	of	cwnd	are	recorded	in	an	Ascii	Sile,	while	the	
moment	of	dropping	packets	is	recorded	in	a	pcap	Sile.	

Method	III)	Automatic	data	collection	and	automatic	plotting	

Data	collection	and	creation	of	plot	Siles	can	be	done	automatically	through	FileHepler	and	
GnuPlotHelper,	 respectively.	 	 As	 an	 example,	 the	 seventh.cc	 script	 uses	 GnuplotHelper	 to	
create	a	plot	Sile	and	FileHelper	to	byte-count	of	each	node’s	output	packets.	In	this	case,	data	
collection	and	the	plot	Sile	creation	can	be	done	automatically.	

Running	a	code	with	different	attributes	

In	general,	there	are	two	ways	to	change	the	value	of	variables	if	you	want	to	run	a	program	
with	new	values.	For	example,	MaxPackets	is	set	to	‘1’	in	the	Sirst.cc	script,	meaning	only	one	
packet	is	sent	through	the	client.	Imagine	you	want	to	run	this	code	in	which	the	client	sends	
4	packets.	Although	you	can	edit	the	code	and	re-run	it,	as	the	easiest	way,	you	can	change	
each	attribute	through	command	line	arguments.	

You	can	check	the	possible	command-line	options	of	a	code	through	the	following	command.	

$	./ns3	run	“/scratch/Sirst	--PrintHelp”	

This	 command	 returns	 “General	Arguments”	 and	 “Program	Options”	of	 the	 Sirst.cc	 script.	
General	arguments	refer	to	arguments	of	built-in	classes	and	functions	of	ns3.	For	instance,	
“DataRate”	is	one	of	the	built-in	attributes	of	PointToPointNetDevice	which	is	set	to	“5Mbps”	



12 
 

in	this	example.	You	can	see	the	default	values	of	this	attribute	and	other	attributes	of	this	
class	through	the	following	command.	

$	./ns3	run	“scratch/Sirst	--PrintAttributes=ns3::PointToPointNetDevice”	

You	 can	 run	 the	 following	 command	 if	 you	 want	 to	 run	 the	 Sirst.cc	 script	 with	
DataRate=10Mbs	without	editing	the	code.	You	can	assign	a	value	for	an	attribute	of	a	class	
even	if	you	have	not	deSined	a	value	for	it	in	your	code.	

$	./ns3	run	“scratch/Sirst	--ns3::PointToPointNetDevice::DataRate=10Mbps”	

Program	options	refer	to	arguments	and	variables	that	you	have	deSined	in	your	code.	These	
variables	are	deSined	at	the	beginning	of	the	main	function	between	“CommandLine……”	and	
“cmd.Pa…..”	lines.	Applying	--PrintHelp	argument	on	the	Sirst.cc	script	does	not	return	any	
output	as	program	options	because	there	is	no	variable	deSined	in	the	corresponding	part,	
while	this	argument	returns	nCsma	and	verbose	variables	for	the	second.cc,	meaning	you	can	
change	them	through	arguments	of	the	run	command	as	follows.	

$	./ns3	run	“scratch/second	--nCsma=10”	

It	means	that	the	number	of	nodes	in	the	LAN	part	is	set	to	11	and	run	it	because	there	is	one	
shared	node	with	 the	point-to-point	part.	 Similarly,	 applying	 --PrintHelp	argument	 to	 the	
third.cc	script	clariSies	that	the	value	of	tracing	variable	is	false	and	the	capturing	process	is	
disabled.	

	

Therefore,	you	should	change	it	to	true	as	follows	if	you	want	to	have	a	.pcap	trace	Sile.	

$	./ns3	run	“scratch/third	--tracing=1”	

For	example,	if	you	want	to	run	Sirst.cc	script	with	a	different	number	of	packets	that	can	be	
determined	by	the	user,	according	to	the	provided	explanations,	you	need	to	modify	the	code	
as	follows	to	deSine	nPackets	as	a	program	options	variable.	



13 
 

		

	

Project	Tasks	

Each	 task	 has	 different	 deliverables.	 Please	 follow	 the	 instructions	 carefully	 to	 cover	 all	
requested	items.	

Task	1:	Review	the	scripts	(30	points)		

In	this	task,	we	just	want	to	review	Sirst.cc,	second.cc,	and	third.cc	scripts.	You	should	cover	
this	task	just	in	the	demo	Sile.	You	do	not	need	to	explain	this	task	in	your	report.	

§ First	Script:	This	script	simulates	a	point-to-point	network	including	two	nodes,	namely	
n0	as	a	client	and	n1	as	a	server,	as	follows.	

	
a) ModiSications	on	code:	Select	a	random	base	address	and	select	a	random	number	

smaller	than	65000	as	the	port	number	of	the	server	and	apply	them	on	the	Sirst.cc	
script.		

b) Run	the	Sirst.cc	and	explain	the	simulation	results	(2	points).		
	

§ Second	Script:	This	script	simulates	a	network	consisting	of	a	point-to-point	network	
and	a	LAN	network.	Point-to-point	part	includes	two	nodes,	i.e.,	n0	as	a	client	and	n1	as	a	
shared	node	between	two	networks. The	LAN	part	consists	of	a	shared	node	(n1)	with	
P2P	part	and	three	extra	nodes,	which	node	n4	is	the	server	of	the	network.	

	



14 
 

c) ModiSications	on	code:	Do	modiSication	on	second.cc	script	to	create	two	trace	Siles	
entitled	“<YourUBIT-P2P>.tr”	for	P2P	part	and	“<YourUBIT-CSMA>.tr”	for	LAN	part.	
Make	 changes	 to	 the	 code	 so	 that	 the	 user	 can	 deSine	 the	 number	 of	 packets	
(NPackets)	through	the	run	command	arguments.		

d) Run	 the	 second.cc	with	 the	 following	values	as	 command	arguments,	PacketSize	=	
2048,	NPackets	=	3,	Delay	=	15ms,	and	10	nodes	in	the	LAN	part.	You	should	deSine	all	
these	parameters	in	one	run	command	(4	points).	

e) Open	one	of	the	generated	trace	Siles	through	a	text	editor	tool	and	explain	it	in	a	few	
sentences	(2	points).		

f) Open	 “<YourUBIT-CSMA>.tr”	 through	 the	 TraceMetrics	 and	 explain	 the	 obtained	
simulation	results	(4	points).		
	

§ Third	Script:	This	script	adds	a	wireless	network	to	the	simulated	scenario	in	the	second	
script.	Node	n0	 is	 the	shared	node	between	the	wireless	part	and	P2P	part,	 this	node	
plays	the	access	point	role	in	the	wireless	network,	and	node	n7	is	the	client	node	in	this	
scenario.			

	
g) ModiSications	on	code:	Do	modiSication	on	third.cc	script	to	create	a	.xml	Sile	entitled	

“<YourUBIT>.xml”,	 and	 three	 .pcap	 Siles	 entitled	 “<YourUBIT-P2P>.pcap”	 for	 P2P	
nodes,	“<YourUBIT-wireless>.pcap”	for	Wi-Fi	nodes	and	“<YourUBIT-CSMA>.pcap”	for	
LAN	 nodes.	Make	 changes	 to	 the	 code	 so	 that	 the	 user	 can	 deSine	 the	 number	 of	
packets	(NPackets)	through	the	run	command	arguments.	Change	the	number	of	Wi-
Fi	nodes	to	5	and	the	number	of	extra	LAN	nodes	to	5.		

h) Run	the	third.cc	with	NPackets	=	4.	
i) Open	the	created	xml	Sile	through	NetAnim	and	explain	the	created	animation	(6	

points).		
j) Open	 three	 pcap	 Siles,	 including	 one	 of	 the	 “<YourUBIT-P2P>.pcap”,	 “<YourUBIT-

wireless>.pcap”,		and	“<YourUBIT-CSMA>.pcap”	through	Wireshark	and	explain	them	
(6	points).			

k) Open	 three	 pcap	 Siles,	 including	 one	 of	 the	 “<YourUBIT-P2P>.pcap”,	 “<YourUBIT-
wireless>.pcap”,		and	“<YourUBIT-CSMA>.pcap”	through	Tcpdump	and	explain	printer	
messaged.	 Are	 there	 any	 differences	 between	 Wireshark	 analysis	 and	 Tcpdump	
analysis	(6	points)?	



15 
 

Task	2:	Analysis	of	second	and	third	scripts	(22	points)	

In	this	task,	we	want	to	run	second.cc	and	third.cc	scripts	with	different	parameters	and	plot	
the	graphs	manually	through	Gnuplot.	You	should	cover	this	task	just	in	the	report	Sile.	You	
do	not	need	to	explain	this	task	in	the	demo	Sile.			

§ Plotting	manually	
a) Run	second.cc	and	third.cc	scripts	with	different	numbers	of	extra	nodes	in	the	LAN	

part	in	the	range	of	5	to	10,	extract	the	throughput	of	each	run	from	the	trace	Siles,	
create	 “<YourUBIT_1>.txt”	 and	 “<YourUBIT_1>.plt”	 Siles	 manually,	 and	 plot	 a	 line	
graph	manually	through	Gnuplot.	This	line	graph	should	represent	the	throughput	of	
LAN	parts	of	second.cc	and	third.cc	scripts	at	different	numbers	of	nodes	in	one	Sigure.	
Attach	 a	 screenshot	 of	 “<YourUBIT_1>.txt”	 and	 “<YourUBIT_1>.plt”,	 the	 resultant	
chart	in	your	report,	and	explain	your	Sigure	in	a	few	sentences	(8	points).	

b) 	Run	second.cc	script	with	different	numbers	of	packets	in	the	range	of	5	to	10,	extract	
number	of	sent	packets	and	number	of	received	packets	of	each	execution	from	the	
trace	 Siles,	 create	 “<YourUBIT_2>.data”	 and	 “<YourUBIT_2>.txt”	 Siles	manually	 and	
plot	a	histogram.	This	histogram	should	represent	the	number	of	sent	packets	and	
number	of	received	packets	of	LAN	part	of	second.cc	script	at	different	numbers	of	
packets	 in	 one	 Sigure.	 Attach	 a	 screenshot	 of	 “<YourUBIT_2>.data”	 and	
“<YourUBIT_2>.txt”,	the	resultant	Sigure	in	your	report,	and	explain	your	Sigure	in	a	
few	sentences	(8	points).	

§ Recording	the	position	of	a	mobile	node	during	the	simulation	
c) According	 to	 the	 explanations	 provided	 on	 page	 94	 of	 the	 tutorial	 Sile,	 add	 the	

required	functions	on	third.cc	to	show	the	positions	of	node	#5	during	the	simulation.	
Attach	a	screenshot	of	the	output	and	explain	it	in	a	few	sentences	(6	points).		
	

Task	3:	TCP	Congestion	window	size	analysis	through	gnuplot-generated	charts	(24	
points)	

In	this	task,	we	want	to	run	Sifth.cc	script	with	different	parameters,	do	the	data	collection	
automatically,	and	plot	graphs	through	gnuplot	manually.	You	should	cover	this	task	only	in	
the	report	Sile.	You	do	not	need	to	explain	this	task	in	your	demo	Sile.		

§ Cwnd	Size	Analysis		
a) Run	the	Sifth.cc	script	with	various	parameters	given	in	the	following	table,	create	four	

.dat	Siles,	and	attach	a	screenshot	of	a	few	lines	of	each	Sile	(4	points).	
b) Plot	a	congestion	window	size	in	terms	of	time	through	terminal	command,	attach	the	

plots	in	your	report,	and	answer	the	following	questions	(4	points).	

	



16 
 

Scenario	 Delay	 P2P	Data	rate	 Error	rate	 Data	size	 Data	generation	
rate	

Generated	6ile	
name	

#1	 Original	 Original	 Original	 Original	 Original	 Your	UBIT-1.dat	
#2	 Original	 Original	 10-10	 2048	 Original	 Your	UBIT-2.dat	
#3	 5ms	 Original	 Original	 Original	 5Mbps	 Your	UBIT-3.dat	
#4	 5ms	 6Mbps	 10-3	 1024	 4Mbps	 Your	UBIT-4.dat	

	

c) In	there	any	differences	in	the	Sigures?	Explain	in	a	few	sentences	(2	points).	
d) On	each	plot,	identify	the	time	of	slow	start,	congestion	avoidance,	and	fast	recovery,	

and	explain	in	your	report	(4	points).		
e) Describe	one	of	the	.dat	Sile	in	a	few	sentences	(4	points).	
f) Which	scenario	has	a	higher	packet	drop	rate?	Explain?	(6	points)	

	

Task	4:	Simulating	a	point-to-point	network	(24	points)	

In	 this	 task,	we	want	 to	 simulate	 the	 following	 point-to-point	 network	 consisting	 of	 four	
nodes.	This	task	should	be	presented	in	the	demo	video.	

	

	

	

	

	

Simulate	this	network	according	to	the	given	simulation	parameters.	

	
Simulation	Parameter	 Value	
Number	of	nodes	 4	
Link’s	Data	rate		 35Mbps	
Link’s	Delay	 27ms	
IP	between	A	and	B	 88.77.66.0,	255.255.255.0	
IP	between	A	and	C	 88.77.77.0,	255.255.255.0	
IP	between	C	and	D	 88.77.88.0,	255.255.255.0	
IP	between	B	and	D	 88.77.99.0,	255.255.255.0	

	

Create	a	continuous	Slow/trafSic	between	node	A	and	node	B,	starting	at	2.0	seconds,	packet	
size	=	1500	bytes,	data	rate	=	700kbps,	and	stop	at	8.0	seconds.	This	means	that	node	A	starts	
generating	 and	 continuously	 sending	 packets	 to	 node	 B	 at	 2.0	 seconds	 and	 stops	 at	 8.0	

A B 

C D 



17 
 

seconds.	There	are	several	methods	to	generate	continuous	trafSic	such	as	OnOffHelper.	This	
class	has	been	utilized	in	several	examples	of	ns3	scripts.	

Note:	You	can	use	grep	command	to	Sind	a	speciSic	expression	in	all	examples	of	a	directory.	
For	example,	 the	 following	command	returns	all	examples	 inside	 the	~/ns-allinone-3.43/	
directory	that	include	OnOffHelper.	See	pages	115	and	116	of	the	tutorial	Sile	for	more	details.	

		

You	can	write	a	snippet	like	the	following	code	to	generate	continuous	trafSic	on	the	client	
side	if	you	want	to	use	OnOffHelper.	

	

Also,	like	the	following	code	on	the	sink	side	(server	side).	

	

Moreover,	 create	 a	 continuous	 Slow/trafSic	 between	 node	 A	 and	 node	 D,	 starting	 at	 4.0	
seconds,	packet	size	=	15500	bytes,	data	rate	=	600kbps,	and	stop	at	9.0	seconds.	You	can	
write	a	 snippet	 like	 the	 following	 code	on	 the	 client	 and	 server	 sides	 for	 remote	 indirect	
connections.	

	

a) Create	a	animation	Sile	“<YourUBIT_3>.xml”	and	a	trace	Sile	“<YourUBIT_3>.tr”,	open	
them	with	the	relevant	tools,	and	explain	you	code	and	the	obtained	results	in	demo	
Sile	(12	points).		



18 
 

b) Attach	 your	 code	 to	 your	 report	 and	 submit	 its	 source	 code	 along	 with	 other	
deliverables	to	UBLearns	(12	points).	

Bonus	Task:	(10	points)		

In	this	task,	we	want	to	add	automatic	data	collection	to	task	4	and	plot	two	charts	through	
Gnuplot	similar	to	the	seventh.cc	script.	You	should	cover	this	task	only	in	the	report	Sile.	You	
do	not	need	to	explain	this	task	in	your	demo	Sile.	

Consider	10-6	and	10-8,	respectively,	for	the	error	rate	for	node	B	and	node	D. All	nodes	can	
have	 only	 IPv4	 addresses	 and	 there	 are	 two	 Slows	 in	 the	 network	 as	 explained	 above.	
Therefore,	you	need	to	record	the	packet-byte-counts	in	two	different	Siles.		

a) Plot	 two	 packet-byte-count	 vs.	 time	 for	 Slow	#1	 between	 node	 A	 and	 node	 B	 and	
Slow#2	between	node	A	and	node	C.	Attach	them	in	your	report	and	explain	each	of	
them	in	a	few	sentences	(5	points).	

b) Attach	 your	 code	 to	 your	 report	 and	 submit	 its	 source	 code	 along	 with	 other	
deliverables	to	UBLearns	(5	points).	
	


