#### CSE610 Special Topics on Mobile Network & Mobile Sensing

Yaxiong Xie

Lec04 Wireless Sensing



### Mobile Sensing

Leveraging the mobile devices to sense the physical world





Localization

**Gesture recognition** 

Vital signal: respiration

#### Wireless channel



#### Wireless channel





Respiration rate is one vital sign that can provide the insight of one's general state of health and can be a valuable indicator of one's underlying medical conditions.













- **Pros: Very accurate**
- Cons: Expensive
  - Intrusive

Not convenient for long-term monitoring

#### Human body is modeled as a cylinder with varying sizes



Path length change ≈ 1cm < 5.7cm (wavelength)



#### **Fresnel zones**

![](_page_10_Picture_2.jpeg)

A circular cylinder moves across the first Fresnel zone

The signal strength varies with the location of the reflector

![](_page_11_Picture_3.jpeg)

## The location of the reflector (the human) determines the performance of the sensing system!

![](_page_12_Figure_2.jpeg)

![](_page_13_Figure_1.jpeg)

• Lying: the positions on the boundary of FFZ are bad positions, whereas most

inner positions are good positions

• Sitting: alternating good and bad positions in FFZ

![](_page_14_Figure_4.jpeg)

Lying

![](_page_14_Figure_5.jpeg)

## A same location can be bad for person A but good for person B.

![](_page_15_Picture_2.jpeg)

Body thickness person B=25cm

Body thickness person B=20cm

At a good position, different lying postures also affect the performance.

![](_page_16_Figure_2.jpeg)

# Demo- the first-generation Wi-Fi base respiration sensing system

![](_page_17_Figure_1.jpeg)

Demo- the second-generation Wi-Fi base respiration sensing system

#### FarSense: Extending the Range of WiFi-based Respiration Sensing with CSI Quotient

Can we improve the sensing performance? We still have bad locations!

#### Quantifying the sensing performance

![](_page_19_Figure_1.jpeg)

#### First Factor: Distance

![](_page_20_Figure_1.jpeg)

#### First Factor: Distance

![](_page_21_Figure_1.jpeg)

#### First Factor: Displacement

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

#### First Factor: Displacement

![](_page_23_Figure_1.jpeg)

#### First Factor: Location

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

#### First Factor: Location

![](_page_25_Figure_1.jpeg)

# The factors that affects the sensing performance

![](_page_26_Figure_1.jpeg)

#### How to improve the performance

## Ask the human to change his location Location **Disadvantages**: 1. Intrusive 2. Difficult to change the location by a precise small amount say 5cm

![](_page_27_Picture_2.jpeg)

# Improving the performance by adding multipath

![](_page_28_Figure_1.jpeg)

#### How to add a multipath?

![](_page_29_Figure_1.jpeg)

"Virtual" Multipath  $S_0 = (H_{t1}, H_{t2}, \dots, H_{tN})$   $H_m = |H_m|e^{-i\theta_m}$   $S_m = (H_{t1} + H_m, H_{t2} + H_m, \dots, H_{tN} + H_m)$ 

#### How to add a multipath?

![](_page_30_Figure_1.jpeg)

### Emotion sensing using radio!

#### Does my advisor like my research?

![](_page_32_Picture_1.jpeg)

# How can we tell people's emotions even if they don't show up on their faces?

![](_page_32_Picture_3.jpeg)

### Existing approaches measure vital signs

Use ECG to get very accurate heartbeats

![](_page_33_Figure_3.jpeg)

### Key idea

![](_page_34_Figure_1.jpeg)

#### Heartbeat information is the key

Emotion recognition needs accurate measurements of the length of every single heartbeat

![](_page_35_Figure_2.jpeg)

#### We need to extract IBI (Inter-beat-interval) with accuracy over 99%
# Input: wireless signal reflected from human target



## Input: wireless signal reflected from human target



How do we extract accurate IBI?

## Step 1: Remove breathing signal



- Breathing masks heartbeats
- We use a filter
  - Heartbeat involves rapid contraction of muscle
  - Breathing is slow and steady

## Heartbeat signal

• Output of acceleration filter



• ECG signal



## Heartbeat signal

• Other typical examples:



- **Intuition**: heartbeat repeats with certain shape (template)
- If we can somehow discover the template, then we can segment into individual heartbeats













## From vital signs to emotions

## Physiological Features for Emotion Recognition

- 37 Features similar to ECG-based methods
  - Variability of IBI
  - Irregularity of breathing

### **Emotion Classification**

- Recognize emotion using physiological features
- Used L1-SVM classifier
  - Select features and train classifier at the same time

## **Emotion Model**

- Standard 2D emotion model
- Classify into anger, sadness, pleasure and joy



## Sensing Human Gestures with Wi-Fi

### WiSee: Whole-Home Gesture Recognition Using Wireless Signals

Qifan Pu, Sidhant Gupta, Shyam Gollakota, Shwetak Patel Mobicom 2013









- **Doppler Shift:**  $\Delta f = \frac{f_c \cdot v_{radial}}{c}$ 
  - V<sub>radial</sub> is the radial component of the receiver's velocity vector along the path
    - Positive  $\Delta f$  with decreasing path length, negative  $\Delta f$  with increasing path length

- For WiFi signal  $f_c$  = 2.4 GHz, v = 0.5m/s
  - **Doppler shift**:  $\Delta f = 8 Hz$

- The frequency bandwidth for WiFi is 20MHz
- We want to measure an 8 Hz change which is 0.00004 % of 20MHz

#### We need to obtain a fine-grained Doppler shift

#### A few hertz

## ToF and AoA: Resolution



Larger bandwidth, higher time resolution

• Increase the observation time to increase the resolution

If we increase the observation time to 1 second, we can achieve 1Hz resolution which is enough to detect a few Hz of doppler shift

# Unique Doppler shifts caused by different gestures



# Demo: Pioneer WiFi-based gesture recognition



## The state-of-the-art human sensing with WiFi



- Tianxing Li, Chuankai An, Zhao Tian,
- Andrew T. Campbell, and Xia Zhou
- Department of Computer Science Dartmouth College



• Leverage the ubiquitous light around us to sense what we do



### Human Sensing Using Visible Light Communication

Tianxing Li, Chuankai An, Zhao Tian, Andrew T. Campbell, and Xia Zhou Department of Computer Science, Dartmouth College



### Key ideas: shadows!







## Not That Simple

Challenge #1: Diluted and complex shadow under multiple light sources



## Not That Simple

Challenge #2: Reconstruct a 3D posture from 2D low-resolution (18 x 18) shadows



Challenge #1: Multiple light sources

Separate light rays via light beacons

Challenge #2: Reconstruct a 3D posture from 2D shadows

Seek a posture best fitting shadows cast in multiple directions



## Light Beacons


#### Recover Shadow Maps

• Infer a binary shadow map cast by each single LED light



# Sensing Human with Visible Light

#### • Search for the skeleton best matching observed shadow maps



# Sensing Human with Visible Light

• Search for the skeleton best matching observed shadow maps



## Testing Gestures

• 20 upper-body gestures



• 5 lower-body gestures



## Testing Gestures



11-degree mean angular error for four lower-body joints