CSE610 Special Topics on Mobile Network & Mobile Sensing

Yaxiong Xie

Lec04 Wireless Localization and Sensing

Wireless Localization

The process of obtaining a human or object's location using wireless signals

Applications:

- Navigation: outdoors (GPS) and indoors (e.g., museum)
- Location based services: Tagging, Reminder, Ads
- Virtual Reality and Motion Capture
- Gestures, writing in the air
- Behavioral Analytics (Health, activities, etc.)
- Locating misplaced items (keys)
- Location based security
- Delivery drones

Wireless Localization System Architecture

Device based: a device leverages incoming signals from multiple "anchors" (Satellites) to determine its own location Network based: Networked "anchors" (Access Points) leverages signal emitted by the mobile device to determine its location

- Higher received signal power \rightarrow Closer to the signal emitter
- Lower received signal power \rightarrow Further away from the signal emitter

- Higher received signal power \rightarrow Closer to the signal emitter
- Lower received signal power \rightarrow Further away from the signal emitter

Indoor navigation

- **Pros:** Very simple, no hardware modifications
- Cons: Highly inaccurate!

- **Pros:** Very simple, no hardware modifications
- **Cons:** Highly inaccurate! Doesn't work with multipath fading!

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

RSSI

$$i = 1 - d_1 - d_2$$
Signal @ $f_1 = 2.4GHz$, $\lambda_1 = 12cm$
 $h = 0.12 e^{j\frac{2\pi}{3}} + 0.113 e^{j\frac{5\pi}{3}} \approx 0.006$
Signal @ $f_2 = 5GHz$, $\lambda_1 = 12cm$
 $h = 0.06 e^{j\frac{5\pi}{3}} + 0.05 e^{j\frac{5\pi}{3}} \approx 0.116$

- **Pros:** Very simple, no hardware modifications
- **Cons:** Highly inaccurate! Doesn't work with multipath fading!

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

Signal @
$$f_1 = 2.4GHz$$
, $\lambda_1 = 12cm$
 $h = 0.12 \ e^{j\frac{2\pi}{3}} + 0.113 \ e^{j\frac{5\pi}{3}} \approx 0.006$
Signal @ $f_2 = 5GHz$, $\lambda_1 = 12cm$
 $h = 0.06 \ e^{j\frac{5\pi}{3}} + 0.05 \ e^{j\frac{5\pi}{3}} \approx 0.116$

Any solutions?

Distance

Solution: Fingerprinting

Measure and record RSSI at each location (war-driving)

- **Pros:** Works with multipath, no need to know AP locations
- **Cons:** Changes in environment/movement \rightarrow Changes in RSSI \bullet Continuously update the fingerprint database! Significant maintenance effort

Method 2: AoA based solution

AoA: angle of arrival

$$\nabla \Phi = \angle h_1 - \angle h_2 = 2\pi \frac{\nabla d}{\lambda}$$
$$\nabla \Phi = 2\pi \frac{s \cdot \cos \theta}{\lambda}$$

$$\nabla \Phi = \angle h_1 - \angle h_2 = 2\pi \frac{\nabla d}{\lambda}$$
$$\nabla \Phi = 2\pi \frac{\mathbf{s} \cdot \cos \theta}{\lambda}$$

- **Pros:** Much more accurate than RSSI based solutions!
- **Cons:** Cannot work in presence of multipath

$$h_{k} = \alpha_{1}e^{j\Phi_{k}(\theta_{1})} + \alpha_{2}e^{j\Phi_{k}(\theta_{2})}$$
$$h_{k} = \sum_{k=1}^{L}\alpha_{k}e^{j\Phi_{k}(\theta_{k})}$$

If there are *L* multipaths

How to estimate the AoA of the multipath signals?

MUSIC algorithm: MUltiple SIgnal Classification

Channel measured from all antennas

MUSIC algorithm: MUltiple SIgnal Classification

MUSIC algorithm: MUltiple SIgnal Classification

MUSIC algorithm: MUltiple SIgnal Classification

Hint 1: strongest path

MUSIC algorithm: MUltiple SIgnal Classification

Hint 1: strongest path

Not always true, if the LoS path is blocked

MUSIC algorithm: MUltiple SIgnal Classification

Hint 1: strongest path
Hint 2: mobility
Hint 3: shortest path
→ smallest Time of Flight (ToF)

 180°

0°

Method 3: ToF based solution

 $\angle h_N = 2\pi (f_1 + (N-1)\nabla f)\tau$

MUSIC algorithm: MUltiple SIgnal Classification

Channel measured from all subcarriers

Resolution: the capability of resolving two multipaths

Delay au

Resolution: the capability of resolving two multipaths

- We change the length of the reflection path to vary the ToF τ_2
- We use MUSIC algorithm to estimate the ToF of two paths

Why resolution is important?

How to improve the resolution?

ToF and AoA: Resolution

Larger bandwidth, higher time resolution

Two signals are close in time domain but far away in spatial domain

Two signals are close in spatial domain but far away in time domain

How does the algorithm work? Input/output?

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix} \xrightarrow{\text{Input}} \text{mD-Track} \xrightarrow{\text{Output}} \xrightarrow{\text{Output}} \xrightarrow{\text{Fight}} \xrightarrow{\text{Time of Flight}}$$

Channel measured from all antennas and all subcarriers

mD-Track: Leveraging Multi-Dimensionality in Passive Indoor Wi-Fi Tracking

Jointly estimate both ToF and AoA for each multipath

- Simultaneously ToF and AoA
- Higher resolution
- Higher accuracy

ToF and AoA: Resolution

Larger bandwidth, higher time resolution

ToF and AoA: Resolution

Larger bandwidth, higher time resolution

Nyquist sampling theorem: *To truthfully recover a signal, we need to sample at twice the highest frequency, i.e.,* 2*f*

Wi-Fi bandwidth of 20 MHz requires an ADC/DAC that can sample at 40 MS/s

A signal bandwidth of 1 GHz requires an ADC/DAC that can sample at 2 GS/s

The interval between two samples is 0.5 ns !!

$$\sin(2\pi ft) \longrightarrow \lim_{l \to \infty} \sin(2\pi ft) \cdot \cos(2\pi f_c t) = \frac{1}{2} [\sin(2\pi (f_c + f)t) - \sin(2\pi (f_c - f)t)]$$
$$\cos(2\pi f_c t)$$

