CSE610 Special Topics on Mobile Network & Mobile Sensing

Yaxiong Xie

Lecture 2: Channel + OFDM + MIMO

Channel adds noise!

$$v(t) \sim N(0, \sigma)$$

Channel delays the signal!

AP

$$y(t) = x(t-\tau) + v(t)$$

Channel delays the signal!

$$au = rac{d}{c}$$
 The distance the signal travels Speed of light

Channel attenuates the signal (Pathloss)

Channel attenuates the signal (Pathloss)

$$P_{rx} = G_{tx}G_{rx} \frac{\lambda^2}{(4\pi d)^2} P_{tx}$$
 \rightarrow $|\mathbf{h}| \propto \frac{\lambda}{d}$ Wavelength of the carrier frequency

Channel rotates the signal (Adds Phase)

$$h \propto \frac{\lambda}{d} e^{j\phi}$$

Channel rotates the signal (Adds Phase)

$$h \propto \frac{\lambda}{d} e^{j\phi} = \frac{\lambda}{d} e^{j2\pi d/\lambda}$$

Wireless channel:

- Add the noise
- Delay the signal
- Attenuate the signal
- Rotate the signal

$$h \propto \frac{\lambda}{d} e^{j\phi} = \frac{\lambda}{d} e^{j2\pi d/\lambda}$$

Considering BPSK

Considering BPSK

Considering BPSK

Considering QAM

We need to estimate and correct for the channel h!

Channel Estimation and & Correction

Channel Estimation

Considering BPSK

Generally, the receiver only gets the RX signals.

Channel Estimation

Wi-Fi: Send Training Sequence (Preamble Bits): Known Bits

Channel Estimation

Cellular: Send Training Sequence: Reference Signal

$$h \propto \frac{\lambda}{d} e^{j\phi} = \frac{\lambda}{d} e^{j2\pi d/\lambda}$$

Assumes single path!

Multipath Propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

Signal of a single path:

Signal attenuation

Multipath Propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

$$y(t) = \alpha_1 e^{j\phi_1} x(t - \tau_1) + \alpha_2 e^{j\phi_2} x(t - \tau_2) + \alpha_3 e^{j\phi_3} x(t - \tau_3) + \cdots$$
$$y(t) = \sum_{i} \alpha_k e^{j\phi_k} x(t - \tau_k) = \sum_{i} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

h(t) is channel impulse response.

$$y(t) = \sum_{k} \alpha_k e^{j\phi_k} x(t - \tau_k) = \sum_{k} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

Multi-tap Channel

$$y(t) = \sum_{k} \alpha_k e^{j\phi_k} x(t - \tau_k) = \sum_{k} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

Multi-tap Channel

$$y(t) = \sum_{k} \alpha_k e^{j\phi_k} x(t - \tau_k) = \sum_{k} h(\tau_k) x(t - \tau_k) = h(t) * x(t)$$

Example of 2 paths with distance $d_1 = 1m$, $d_2 = 1.6m$

$$h = h_1 + h_2 = \frac{\lambda}{d_1} e^{j2\pi d_1/\lambda} + \frac{\lambda}{d_2} e^{j2\pi d_2/\lambda}$$

Signal @
$$f_1 = 2.4 GHz$$
, $\lambda_1 = 12 cm$

$$h = 0.12 e^{j\frac{2\pi}{3}} + 0.113 e^{j\frac{5\pi}{3}} \approx 0.006$$

Signal @
$$f_2=5GHz$$
, $\lambda_1=12cm$

$$h = 0.06 e^{j\frac{5\pi}{3}} + 0.05 e^{j\frac{5\pi}{3}} \approx 0.116$$

Multi-tap Channel

$$17 \times$$
 (24dB)

Signal @ $f_1 = 2.4 GHz$

Signal @ $f_2 = 5GHz$

The same multipath channel

 $h \approx 0.006$

17× (24dB)

 $h \approx 0.116$

Multi-tap Channel

Channel Fading

Symbols arriving along different paths sum up destructively

Multi-tap Channel

Frequency Selective Fading

Frequency Selective Fading

How can we estimate such a complicated wireless channel?

Channel Estimation for Wideband Channel

Multi-tap Channel

Frequency Selective Fading

Channel of a narrowband can be treated as flat

Single Carrier Modulation

Single Carrier Modulation

- Divide the spectrum into many narrow bands
- Transmits symbols on different carriers in the narrow bands
- Channel is Flat → estimate channel of each narrow band

- Divide the spectrum into many narrow bands
- Transmits symbols on different carriers in the narrow bands
- Channel is Flat → estimate channel of each narrow band

Not That Simple!

Divide the spectrum into many narrow bands

- Significant leakage between adjacent subcarriers
- Need guard bands → very very inefficient

Solution: Make the Sub-Carriers Orthogonal

Symbols modulated on multiple Sub-carrier frequencies

Make the Sub-Carriers Orthogonal

OFDM: Orthogonal Frequency Division Multiplexing

• Subcarriers are orthogonal: At the sub-carrier frequency, the sampled value has zero leakage from other subcarriers.

How to achieve this?

OFDM: Orthogonal Frequency Division Multiplexing Use DFT: Discrete Fourier Transform

N-Point DFT:
$$X(f_i) = \frac{1}{N} \sum_{t=0}^{N-1} x(t) e^{-j\frac{2\pi f_i t}{N}}$$

N-Point IDFT:
$$x(t) = \sum_{f_i=0}^{N-1} X(f_i)e^{j\frac{2\pi f_i t}{N}}$$

Send symbols in Frequency Domain

 $X(f) = s(n) \rightarrow Compute and transmit x(t) using IDFT$

MIMO: Multiple Input Multiple Output

So far: single input single output

MIMO: multiple input multiple output

MIMO: Multiple Input Multiple Output

So far: single input single output

MIMO: multiple input multiple output

MIMO Gains

Diversity Gain:

- Send/Receive the same packet on multiple antennas
- Increase SNR of the received packets
 - → transmit at higher data rates

Multiplexing Gain:

- Send multiple packets at the same time
- $N \times N$ MIMO $\rightarrow N \times$ more packets

MIMO Gains

Diversity Gain:

- Send/Receive the same packet on multiple antennas
- Increase SNR of the received packets
 - → transmit at higher data rates

Diversity Gains

How to best decode x?

Option 1: Add the received signals

$$y_1 + y_2 = h_1 x + n_1 + h_2 x + n_2$$

= $(h_1 + h_2)x + n_1 + n_2$

Channels can sum up destructively! $h_1 + h_2 \approx 0$

Diversity Gains

How to best decode x?

Option 1: Add the received signals

Option 2: Decode independently

Sub-optimal!

Diversity Gains

How to best decode x?

Option 1: Add the received signals

Option 2: Decode independently

Optimal Solution: Maximum Ratio Combining (MRC)

$$y_1 + y_2 = (h_1 + h_2)x + n_1 + n_2$$

Channels can sum up destructively! $h_1 + h_2 \approx 0$

$$x \qquad \qquad y_1 = h_1 x + n_1 \times w_1$$

$$y_2 = h_2 x + n_2 \times w_2$$

$$w_1y_1 + w_2y_2 = (w_1h_1 + w_2h_2)x + w_1n_1 + w_2n_2$$

The optimal weight is:
$$egin{cases} w_1 = h_1^* \ w_2 = h_1^* \end{cases}$$

$$x \qquad \qquad y_1 = h_1 x + n_1 \times w_1$$

$$y_2 = h_2 x + n_2 \times w_2$$

$$w_1 y_1 + w_2 y_2 = (h_1^* h_1 + h_1^* h_2) x + h_1^* n_1 + h_1^* n_2$$

= $(|h_1|^2 + |h_2|^2) x + h_1^* n_1 + h_1^* n_2$

$$x \qquad y_1 = h_1 x + n_1 \times w_1$$

$$y_2 = h_2 x + n_2 \times w_2$$

$$w_1 y_1 + w_2 y_2 = (h_1^* h_1 + h_1^* h_2) x + h_1^* n_1 + h_1^* n_2$$

= $(|h_1|^2 + |h_2|^2) x + h_1^* n_1 + h_1^* n_2$

Let
$$P = D[|x|^2]$$
 and $N_0 = D[|n_1|^2] = D[|n_1|^2]$
Signal Power = $(|h_1|^2 + |h_2|^2)^2 P$
Noise Power = $D[|h_1^*n_1 + h_1^*n_2|^2] = D[|h_1^*n_1|^2] + D[|h_1^*n_2|^2]$
= $|h_1|^2 D[|n_1|^2] + |h_2|^2 D[|n_2|^2] = (|h_1|^2 + |h_2|^2) N_0$

$$x \qquad \qquad y_1 = h_1 x + n_1 \times w_1$$

$$y_2 = h_2 x + n_2 \times w_2$$

$$w_1 y_1 + w_2 y_2 = (h_1^* h_1 + h_1^* h_2) x + h_1^* n_1 + h_1^* n_2$$

= $(|h_1|^2 + |h_2|^2) x + h_1^* n_1 + h_1^* n_2$

Let
$$P = D[|x|^2]$$
 and $N_0 = D[|n_1|^2] = D[|n_1|^2]$

Signal Power =
$$(|h_1|^2 + |h_2|^2)^2 P$$

Noise Power =
$$(|h_1|^2 + |h_2|^2) N_0$$

SNR =
$$\frac{(|h_1|^2 + |h_2|^2)^2 P}{(|h_1|^2 + |h_2|^2) N_0} = (|h_1|^2 + |h_2|^2) \frac{P}{N_0}$$

$$x \qquad y_1 = h_1 x + n_1 \times w_1$$

$$y_2 = h_2 x + n_2 \times w_2$$

$$w_1 y_1 + w_2 y_2 = (h_1^* h_1 + h_1^* h_2) x + h_1^* n_1 + h_1^* n_2$$

= $(|h_1|^2 + |h_2|^2) x + h_1^* n_1 + h_1^* n_2$

With Maximum Ratio Combining and Diversity:

SNR =
$$(|h_1|^2 + |h_2|^2) \frac{P}{N_0}$$

SNR =
$$|h_1|^2 \frac{P}{N_0}$$
 Or SNR = $|h_2|^2 \frac{P}{N_0}$

$$SNR = |h_2|^2 \frac{P}{N_0}$$

$$x \qquad y_1 = h_1 x + n_1 \times w_1$$

$$y_2 = h_2 x + n_2 \times w_2$$

With Maximum Ratio Combining and Diversity:

SNR =
$$(|h_1|^2 + |h_2|^2) \frac{P}{N_0}$$

Single receiver and no Diversity:

$$SNR = |h_1|^2 \frac{P}{N_0}$$

SNR =
$$|h_1|^2 \frac{P}{N_0}$$
 Or SNR = $|h_2|^2 \frac{P}{N_0}$

• If $|h_1|^2 \approx |h_2|^2$. \rightarrow We almost double the SNR!

MIMO Gains

Diversity Gain:

- Send/Receive the same packet on multiple antennas
- Increase SNR of the received packets
 - → transmit at higher data rates

Multiplexing Gain:

- Send multiple packets at the same time
- $N \times N$ MIMO $\rightarrow N \times$ more packets

Multiplexing Gains

$$x_{1} = h_{11}x_{1} + h_{21}x_{2}$$

$$x_{2} = h_{12}x_{1} + h_{22}x_{2}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{21} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_1 \end{bmatrix} \qquad \qquad \mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

How to recover x_1 and x_2 ?

Estimate H, compute H^{-1} , and invert the channel

$$\tilde{x} = H^{-1}y = H^{-1}Hx + H^{-1}n = x + H^{-1}n$$

Multiplexing Gains

$$x_{1} = h_{11}x_{1} + h_{21}x_{2}$$

$$x_{2} = h_{12}x_{1} + h_{22}x_{2}$$

$$\begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{21} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{1} \end{bmatrix} + \begin{bmatrix} n_{1} \\ n_{1} \end{bmatrix}$$

$$y_{1} = h_{11}x_{1} + h_{21}x_{2}$$

$$y_{2} = h_{12}x_{1} + h_{22}x_{2}$$

$$y_{3} = h_{12}x_{1} + h_{22}x_{2}$$

$$y_{4} = h_{12}x_{1} + h_{21}x_{2}$$

$$y_{5} = h_{12}x_{1} + h_{22}x_{2}$$

How to recover x_1 and x_2 ?

We transmit two packet at one time!

Double the throughput!

MIMO Channel Estimation

How to estimate the channels: h_{11} h_{12} h_{21} h_{22} ?

TX 1:	Preamble	x_1
TX 2:	Preamble	χ_{2}

MIMO Channel Estimation

How to estimate the channels: h_{11} h_{12} h_{21} h_{22} ?

TX 1:	Preamble		x_2
TX 2:		Preamble	x_2

MIMO Application: Wireless Charging

- Near-field charging
- Device still needs to be close to the charger

- Not as efficient as wired charging
- 20% or higher power is wasted
- It's a lot harder to use a phone during the wireless charging process (at least for now)
- Usually slower than wired charging
- Plastic and glass cases needed (no metal)

Employ magnetic field to generate current for charging

Magnetic field generates a current in Rx → Power in Rx Cyrrent **Rx Coil** Magnetic **Field** Tx Coil **AC Current**

Wireless charging in the future??

- Far-field charging
- Meters away

Wireless Charging: Beamforming

Can concentrate power at one direction

Wireless Charging: Beamforming

Can concentrate power at one direction

Much safer!

Beamforming

- Safety
- Efficiency
- Cold start
- Mobility
- Implant charging

MIMO + OFDM has been widely used in many communication system, such as Wi-Fi and Cellular

WiFi Standards from WiFi 1 to WiFi 6

Version	Year	Technology	Modulation	Freq.	Bandwidth	Maximu m Data Rate
WiFi 1 (802.11b)	1999	DSSS	DBPSK, DQPSK,	2.4 GHz	22 MHz	

WiFi Standards from WiFi 1 to WiFi 6

Version	Year	Technology	Modulation	Freq.	Bandwidth	Maximu m Data Rate
WiFi 1 (802.11b)	1999	DSSS	DBPSK, DQPSK,	2.4 GHz	22 MHz	11 Mb/s

WiFi Standards from WiFi 1 to WiFi 6

Version	Year	Technology	Modulation	Freq.	Bandwidth	Maximu m Data Rate
WiFi 1 (802.11b)	1999	DSSS	DBPSK, DQPSK,	2.4 GHz	22 MHz	11 Mb/s
WiFi 3 (802.11g)	2003	OFDM (N=64)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz	20 MHz	54 Mb/s

Version	Year	Technology	Modulation	Freq.	Bandwidth	Maximu m Data Rate
WiFi 1 (802.11b)	1999	DSSS	DBPSK, DQPSK,	2.4 GHz	22 MHz	11 Mb/s
WiFi 3 (802.11g)	2003	OFDM (N=64)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz	20 MHz	54 Mb/s
	2009				20 MHz 40 MHz	

Version	Year	Technology	Modulation	Freq.	Bandwidth	Maximu m Data Rate
WiFi 1 (802.11b)	1999	DSSS	DBPSK, DQPSK,	2.4 GHz	22 MHz	11 Mb/s
WiFi 3 (802.11g)	2003	OFDM (N=64)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz	20 MHz	54 Mb/s
WiFi 4 (802.11n)	2009	OFDM (N=64) MIMO (4x4)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz 5 GHz	20 MHz 40 MHz	

Version	Year	Technology	Modulation	Freq.	Bandwidth	Maximu m Data Rate
WiFi 1 (802.11b)	1999	DSSS	DBPSK, DQPSK,	2.4 GHz	22 MHz	11 Mb/s
WiFi 3 (802.11g)	2003	OFDM (N=64)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz	20 MHz	54 Mb/s
WiFi 4 (802.11n)	2009	OFDM (N=64) MIMO (4x4)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz 5 GHz	20 MHz 40 MHz	600 Mb/s
WiFi 5 (802.11ac)	2014	OFDM (N=64, 128, 256, 512) MIMO (8x8) MU-MIMO (Downlink)	BPSK, QPSK, 16-QAM, 64-QAM 256-QAM	5 GHz	20 MHz 40 MHz 80 MHz 160 MHz	6.933 Gb/s

Version	Year	Technology	Modulation	Freq.	Bandwidth	Maximu m Data Rate
WiFi 1 (802.11b)	1999	DSSS	DBPSK, DQPSK,	2.4 GHz	22 MHz	11 Mb/s
WiFi 3 (802.11g)	2003	OFDM (N=64)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz	20 MHz	54 Mb/s
WiFi 4 (802.11n)	2009	OFDM (N=64) MIMO (4x4)	BPSK, QPSK, 16-QAM, 64-QAM	2.4 GHz 5 GHz	20 MHz 40 MHz	600 Mb/s
WiFi 5 (802.11ac)	2014	OFDM (N=64, 128, 256, 512) MIMO (8x8) MU-MIMO (Downlink)	BPSK, QPSK, 16-QAM, 64-QAM 256-QAM	5 GHz	20 MHz 40 MHz 80 MHz 160 MHz	6.933 Gb/s
		OFDM (N=256, 512, 1024, 2048) MIMO (8x8) MU-MIMO (Up & Down) OFDMA			20 MHz 40 MHz 80 MHz 160 MHz	

More Channels & Bandwidth

Cellular Physical Layer: OFDMA

Orthogonal Frequency-Division Multiple Access

Cellular Physical Layer: OFDMA

Orthogonal Frequency-Division Multiple Access

Cellular Physical Layer: OFDMA

Orthogonal Frequency-Division Multiple Access

Cellular Physical Layer: Bit rate adaptation

Bandwidth Allocation + Bitrate Adaptation

Bandwidth Allocation + Bitrate Adaptation

Bandwidth Allocation + Bitrate Adaptation

