Chapter 5
Network Layer:
Control Plane

James F. Kurose | Keith W. Rc]:ss

‘e

Yaxiong Xie e

=~ e ee—————

COMPUTER ™
NETWORKING

) ATOP-DOWN APPROACH ~ -

Eighth Edition

Department of Computer Science and Engineering
University at Buffalo, SUNY

VI AOAO O S {?“,‘

—

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Adapted from the slides of the book’s authors Pearson, 2020

Network layer control plane: our goals

"understand principles " instantiation, implementation
behind network control in the Internet:
plane: * OSPF, BGP
* traditional routing algorithms OpenFlow, ODL and ONOS
* SDN controllers controllers
* network management, * Internet Control Message
configuration Protocol: ICMP

* SNMP, YANG/NETCONF

Network Layer: 5-2

Network layer: “control plane” roadmap

® introduction

= routing protocols
= |ink state
= distance vector

= intra-ISP routing: OSPF

" routing among ISPs: BGP
= SDN trol pl " network management,
CONIroT plane configuration

" [nternet Control Message e SNMP
Protocol » NETCONF/YANG

Network Layer: 5-3

Network-layer functions

= forwarding: move packets from router’s

Input to appropriate router output data plane

" routing: determine route taken by

packets from source to destination control p/ane

Two approaches to structuring network control plane:
" per-router control (traditional)
= |ogically centralized control (software defined networking)

Network Layer: 5-4

Per-router control plane

Individual routing algorithm components in each and every
router interact in the control plane

~ control
plane

data
plane

values in arriving
packet heade

Network Layer: 5-5

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

control
plane

values in arriving
packet header

Network Layer: 5-6

Per-router
control plane

SDN control plane

— Remote Controller -—

Eﬂ N i, O i R | N ﬁ
== R S
<D | |

DD D ©
- L. o

Network layer: “control plane” roadmap

" routing protocols

= [ink state
= distance vector

Network Layer: 5-8

Goal of routing protocols

Determine “good” paths (equivalently, routes), from sending hosts to
receiving host, through network of routers

Application
Transport

Link
Physical

Link

Physical

Sending
host

< N

Link
Physical

Application
 Network Transmort
- Network [Network
Physical ™ Link
— Physical Physical
>
P —_—
U— e © ol]]
> —2><7= Receiving
N — XA ot
e ¥ ad
=z > Link
A MeSh Of Routers PhySicaI Introduction: 1-9

Goal of routing protocols

Whatis a “good” path?

Application

Application m Transport

Transport Link m

Lin.k Lin.k >< > =< Physical Physical
Physical Physical
’v\ < N
e T S
Sending - Re(r:]elvmg
host Network [N N gl Network ost
Link 7 Link

PhySicaI A Mesh Of Routers PhySicaI Introduction: 1-10

Goal of routing protocols

Whatis a “good” path?

Path with the smallest cost

cost=1 -> Path with the smallest number of hops
C , D cost G
@ 0S @ @
A Cost = C T \gost,
cost cost
E >
@\ B i - H N

cost'_
co F

——

roduction: 1-11

Goal of routing protocols

Whatis a “good” path?

cost = bandt/idth -> Path with the highest speed
C , D cost ©
> ostS>=<) oS
A Cost t\ =
COS cost
E
g%iigi\\\B ///4§géfgi> H
cost Y= cost s~

cost
co F

——

Path with the smallest cost

cost |
-

cost

roduction: 1-12

Goal of routing protocols

What is a “good” path? Path with the smallest cost
A ->| A->C->D->G->I| A->B->D->G->| A->B->E->H->I|
A->C->B->E->H->I A->B->F->H->I A->B->D->H->I

A COSt cost\ cost,
£ [l o, S
cost Y=~ costQ > Cost

cost
co F

——

roduction: 1-13

Goal of routing protocols

What is a “good” path? Path with the smallest cost

Mathematical Problem:
Find the shortest path in this graph

Example: Router A:
Find the shortest path to all the
other routers inside the network

Goal of routing protocols

What is a “good” path? Path with the smallest cost

Router A->I: A->C->D->G->|

IP Address Range Interface
200.23.16.0/23 B
200.23.18.0/23 B
IP of Router | C

Network layer: “control plane” roadmap

" routing protocols
" [ink state

Network Layer: 5-16

Dijkstra’s link-state routing algorithm

= centralized: network topology, link
costs known to all nodes

e accomplished via “link state
broadcast”

* all nodes have same info

=" computes least cost paths from one
node (“source”) to all other nodes
» gives forwarding table for that node

= iterative: after k iterations, know
least cost path to k destinations

Network Layer: 5-17

Dijkstra’s link-state routing algorithm

Initialization

Shorted Distance

8188|888

Network Layer: 5-18

Dijkstra’s link-state routing algorithm

Initialization

Shorted Distance

A AlO

| m | O | O |

8188 |8

Network Layer: 5-19

Dijkstra’s link-state routing algorithm

Initialization

Shorted Distance

m | m (O | O |
|8 |8 |w

Check the distance between the source
and all its neighbors

Network Layer: 5-20

Dijkstra’s link-state routing algorithm

Initialization

Shorted Distance

A AlO
B |10
C C|5
D | o0
E | o0
F | oo

Mark the selected neighbor (C) as visited

Network Layer: 5-21

Dijkstra’s link-state routing algorithm

Initialization

Shorted Distance

A AlO
B |10
C C|5
D | o0
E | o0
F | oo

Check the distance between source and
all visited nodes’ neighbors

Network Layer: 5-22

Dijkstra’s link-state routing algorithm

Initialization

Shorted Distance

A AlO
B B |10
C C|5
D | o0
E | o0
F | oo

Mark the selected neighbor (B) as visited

Network Layer: 5-23

Dijkstra’s link-state routing algorithm

Initialization

Shorted Distance

A AlO
B B |10
C C|5
D | o0
E | o0
F | oo

Check the distance between source and
all visited nodes’ neighbors

Network Layer: 5-24

Dijkstra’s link-state routing algorithm

Initialization

A->B->D 17
A->C->E 15

Shorted Distance

A AlO
10
5
17
15

00

| m | O | O |

Mark the selected neighbor (E) as visited

Network Layer: 5-25

Dijkstra’s link-state routing algorithm

Initialization

A->B->D 17

Shorted Distance

A->C->E->D 30 A Ao

G A->C->E->F 25 B |10
C C|5

D |17

E E |15

F |25

Check the distance between source and
all visited nodes’ neighbors

Network Layer: 5-26

Dijkstra’s link-state routing algorithm

Initialization

A->B->D 17
A->C->E->D 30

Shorted Distance

AlO
10
5
17
15
25

m| O | O || >

| m | O | O |

Mark the selected neighbor (D) as visited

Network Layer: 5-27

Dijkstra’s link-state routing algorithm

Initialization

A->B->D->F 21

Shorted Distance

A->C->E->F 25 Alo

10
5
17
15
25

m| O | O || >

m | m | O[O | ©

Check the distance between source and
all visited nodes’ neighbors

Network Layer: 5-28

Dijkstra’s link-state routing algorithm

Initialization

A->B->D->F 21

Shorted Distance

A->C->E->F 25 Alo

10
5
17
15
21

| m | OO || >
| m | O (O |

Mark the selected neighbor (F) as visited

Network Layer: 5-29

Dijkstra’s link-state routing algorithm: Result

Link Next Hop Overall Cost
A->B B 10
A->C C 5

A->D B 17
A->E C 15

A->F B 21

Network Layer: 5-30

Network layer: “control plane” roadmap

" routing protocols

» distance vector

Network Layer: 5-31

Distance vector algorithm

Based on Bellman-Ford (BF) equation (dynamic programming):

Bellman-Ford equation

Let D,(y): cost of least-cost path from x to y.
Then:

D,(y) =min, { ¢, + Dlv(y)]

V’'s estimated least-cost-path cost to y

min taken over all neighbors v of x direct cost of link from x to v

Network Layer: 5-32

Bellman-Ford Example

Q: Find the shortest distance A -> F
A has two neighbors: B and C

Shortest distance:
B->F: 11 C->F: 20
A->B: 10 A->C: 5

A->B->F: 21 < A->C->F: 25
Shortest Path: A->B->F Next Hop: B Total Cost: 21

Network Layer: 5-33

Distance vector algorithm:

Link Cost
A->B 10
A->C 5

Network Layer: 5-34

Distance vector algorithm:

Link

A->B

A->C

A->D

A->E

A->F

Network Layer: 5-35

Distance vector algorithm:

Link Cost
A->B 10
A->C 5

Network Layer: 5-36

Distance vector algorithm:

Link Cost
B->A 10
B->C 6
B->D 7
Link Cost 10
A->B 10
A->C 5
5
Link Cost
C->A 5
C->B 6
C->E 10

Link Cost
D->B 7
D->E 15
D->F 4
Link Cost
F->D 4
F->E 10

7
4
15

10 10
Link Cost
E->C 10
E->D 15
E->F 10

Network Layer: 5-37

Distance vector algorithm: iteration 1

Link Cost
B->A 10
B->C 6
B->D 7
Link Cost 10
A->B 10
A->C 5
5
Link Cost
C->A 5
C->B 6
C->E 10

Link Cost
D->B 7
D->E 15
D->F 4
Link Cost
F->D 4
F->E 10

7
4
15
10 10
Link Cost
E->C 10
E->D 15
E->F 10

Network Layer: 5-38

Distance vector algorithm: iteration 1

Link

Cost

A->B

10

A->C

New paths

A->B->C 16
A->B->D 17
A->C->B 11
A->C->E 15

>

>

Router A has 3 distance vector tables

Link Cost
B->A 10
B->C 6
B->D 7
A->C 5
New destination
A->B 10

New destination

Link Cost

C->A 5

C->B 6

C->E 10

New table

Link Cost
A->B 10
A->C 5
A->D 17
A->E 15

Network Layer: 5-39

Distance vector algorithm: iteration 1

Router B has 4 distance vector tables

Link Cost Link Cost Link Cost Link Cost
A->B 10 B->A 10 C->A 5 D->B 7
A->C 5 B->C 6 C->B 6 D->E 15
B->D 7 C->E 10 D->F 4
New paths New table
Link Cost
B>A>C 15 > B->C6 oA 10
B->C->E 16 New destination BoC 6
B->C->A 11 > B->A 10 B->D 7
B->D->E 21 > B->C->E 16 B->E 16
B->D->F 11 New destination B->F 11

Network Layer: 5-40

Distance vector algorithm:

each node:

l

wait for (change in local link
cost or msg from neighbor)

l

recompute DV estimates using
DV received from neighbor

l

if DV to any destination has
changed, notify neighbors

Network Layer: 5-41

Distance vector algorithm:

each node: iterative, asynchronous: each local
l iteration caused by:
wait for (change in local link " local link cost change
cost or msg from neighbor) * DV update message from neighbor

l

recompute DV estimates using
DV received from neighbor

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

l " neighbors then notify their
if DV to any destination has neighbors — only if necessary
changed, notify neighbors " no notification received, no

actions taken!

Network Layer: 5-42

Distance vector: example

D

t=0

= All nodes have
distance estimates
to nearest
neighbors (only)

= All nodes send
their local
distance vector to
their neighbors

D.(a)=0
D,(b) = 8
D.(c) = o0
D,(d) = 1
D.(e) =
D,(f) = e
Da(g) =00
Da(h) = oo
Da(i) = 0o

Sv\
v
1 1
1
==
-
1t 1

missing link
larger cost

A few asymmetries:

Network Layer: 5-43

Distance vector example: iteration

D= == =g
1 1

t=1
1 1

All nodes:

= receive distance

vectors from 1 | 8

neighbors Sdoe 2o e 2§
0 ! 1 L TR
1 1 1
! 1 v
T 1 =» e 1 »(iB

Network Layer: 5-44

Distance vector example: iteration

@ compute compute : compute
8

t=1

1 1
All nodes:
. compute compute compute
= compute their new P 1 P 1
local distance
vector
1 1 1
compute] compute 1 compute

Network Layer: 5-45

Distance vector example: iteration

@ R =
t=1 | |

1 1
All nodes: » *

= send their new 1 1 1
local distance 1 1) 1]
vector to neighbors

S —==Ch>— =<3

Network Layer: 5-46

Distance vector example: iteration

D= == =g
1 1

t=2
1 1

All nodes:

= receive distance

vectors from 1 | 8

neighbors Sdoe 2o e 2§
0 ! 1 L TR
1 1 1
! 1 v
T 1 =» e 1 »(iB

Network Layer: 5-47

Distance vector example: iteration

,

t=2

All nodes:

= compute their new
local distance
vector

compute

compute

compute

compute

compute

compute

compute

compute

compute

Network Layer: 5-48

Distance vector example: iteration

@ R =
t=2 | |

1 1
All nodes: » *

= send their new 1 1 1
local distance 1 1) 1]
vector to neighbors

S —==Ch>— =<3

Network Layer: 5-49

Distance vector: state information diffusion

lterative communication, computation steps diffuses information through network:

@ t=0 C’s state at t=0is at conly

<= -;‘@ - =

C’s state at t=0 has propagated to b, and
@ t=1 may influence distance vector computations

up to 1 hop away, i.e., atb

C’s state at t=0 may now influence distance

@ t=2 vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

@ =3 c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., at d, f, h

@ ‘o4 c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at g, i

Key difference between LS and DV

global: all routers have complete decentralized: iterative process of
topology, link cost info computation, exchange of info with neighbors
* “link state” algorithms * routers initially only know link costs to

attached neighbors
e “distance vector” algorithms

control
plane

values in arriving

packet heade
&—‘ ><
! >

Network Layer: 5-51

	Default Section
	Slide 1

	Section 1
	Slide 2: Network layer control plane: our goals
	Slide 3: Network layer: “control plane” roadmap
	Slide 4: Network-layer functions
	Slide 5: Per-router control plane
	Slide 6: Software-Defined Networking (SDN) control plane
	Slide 7: Per-router control plane
	Slide 8: Network layer: “control plane” roadmap
	Slide 9: Goal of routing protocols
	Slide 10: Goal of routing protocols
	Slide 11: Goal of routing protocols
	Slide 12: Goal of routing protocols
	Slide 13: Goal of routing protocols
	Slide 14: Goal of routing protocols
	Slide 15: Goal of routing protocols
	Slide 16: Network layer: “control plane” roadmap
	Slide 17: Dijkstra’s link-state routing algorithm
	Slide 18: Dijkstra’s link-state routing algorithm
	Slide 19: Dijkstra’s link-state routing algorithm
	Slide 20: Dijkstra’s link-state routing algorithm
	Slide 21: Dijkstra’s link-state routing algorithm
	Slide 22: Dijkstra’s link-state routing algorithm
	Slide 23: Dijkstra’s link-state routing algorithm
	Slide 24: Dijkstra’s link-state routing algorithm
	Slide 25: Dijkstra’s link-state routing algorithm
	Slide 26: Dijkstra’s link-state routing algorithm
	Slide 27: Dijkstra’s link-state routing algorithm
	Slide 28: Dijkstra’s link-state routing algorithm
	Slide 29: Dijkstra’s link-state routing algorithm
	Slide 30: Dijkstra’s link-state routing algorithm: Result
	Slide 31: Network layer: “control plane” roadmap
	Slide 32: Distance vector algorithm
	Slide 33: Bellman-Ford Example
	Slide 34: Distance vector algorithm:
	Slide 35: Distance vector algorithm:
	Slide 36: Distance vector algorithm:
	Slide 37: Distance vector algorithm:
	Slide 38: Distance vector algorithm: iteration 1
	Slide 39: Distance vector algorithm: iteration 1
	Slide 40: Distance vector algorithm: iteration 1
	Slide 41: Distance vector algorithm:
	Slide 42: Distance vector algorithm:
	Slide 43: Distance vector: example
	Slide 44: Distance vector example: iteration
	Slide 45: Distance vector example: iteration
	Slide 46: Distance vector example: iteration
	Slide 47: Distance vector example: iteration
	Slide 48: Distance vector example: iteration
	Slide 49: Distance vector example: iteration
	Slide 50: Distance vector: state information diffusion
	Slide 51: Key difference between LS and DV

