Chapter 4
Network Layer:
Data Plane

James F. Kurose | Keith W. Rc]:ss

Yaxiong Xie

‘e

—]

=~ e ee—————

COMPUTER ™
NETWORKING

) ATOP-DOWN APPROACH ~ -

Eighth Edition

Department of Computer Science and Engineering
University at Buffalo, SUNY

VI AOAO O S {?“,‘

—

Computer Networking: A
Top-Down Approach

8th edition
Jim Kurose, Keith Ross
Adapted from the slides of the book’s authors Pearson, 2020

Network layer: “data plane” roadmap

= Generalized Forwarding, SDN
* Match+action
* OpenFlow: match+action in action

Network Layer: 4-96

Router: Forwarding Table

IP Address Range

Forwarding Interface

200.23.16.0/23 1
200.23.18.0/23 2
200.23.20.0/23 3

Action: Match and forward

values in arriving
packet header

Network Layer: 4-97

Router: Forwarding Table

IP Address Range

Forwarding Interface

200.23.16.0/23 1
200.23.18.0/23 2
200.23.20.0/23 3

Action: Match and forward

values in arriving
packet header

Network Layer: 4-98

Router: Forwarding Table

Action: Match and forward

Router: Forwarding Table

Action: Match and forward

Network Layer Head

32 bits
head.| type of
Ye'| len | service length
16-bit identifier |figs fraff';s”:;“
timeto | upper header
live layer checksum

source IP address

destination IP address ;

options (if any)

payload data
(variable length,
typically a TCP
or UDP segment)

Forward

Network Layer: 4-100

Router: Forwarding Table

Action:

32 bits

head.| type of
ver len | service length
16-bit identifier |figs f"aoﬂ';snzft
time to | upper header
live layer checksum

source IP address

destination IP address

options (if any)

Forward

payload data
(variable length,
typically a TCP
or UDP segment)

Network Layer: 4-101

Generalization: Match and action

Action:and

32 bits

ver head. type‘ of
len | service

16-bit identifier

time to uPper 4 header
live layer checksum

source IP address

destination IP address

options (if any)

payload data
(variable length,
typically a TCP
or UDP segment)

Forward
Drop

Copy
Modify

Network Layer: 4-102

Generalized forwarding: match plus action

Review: each router contains a forwarding table (aka: flow table)
= “match plus action” abstraction: match bits in arriving packet, take action
* destinodion-based forwarding: forward based on dest. IP address

packet header

* many action possible: drop/copy/modify/log packet

forwarding table
(aka: flow table)

S

Network Layer: 4-103

Flow table abstraction

» flow: defined by header field values (in link-, network-, transport-layer fields)

» ceneralized forwarding: simple packet-handling rules

* match: pattern values in packet header fields
e actions: for matched packet: drop, forward, modify, matched packet or send

matched packet to con
* priority: disambiguate

troller
overlapping patterns

e counters: #bytes and #packets

Flow table

Router’s flow table define

match | action

router’s match+action rules

- Ny

"

~—

Network Layer: 4-104

Flow table abstraction

= flow: defined by header fields

" ceneralized forwarding: simple packet-handling rules

* match: pattern values in packet header fields

* actions: for matched packet: drop, forward, modify, matched packet or send
matched packet to controller

* priority: disambiguate overlapping patterns
e counters: #bytes and #packets

src = *.*.* * dest=3.4.*.* | forward(2)
src=1.2.*.*, dest=*.*.** | drop
src=10.1.2.3, dest=*.*.*.* | send to controller

_ * - wildcard

Flow table
match | action

L K
N Network Layer: 4-105

Open Flow: the communication protocol

@ Remote Controller

Open Flow

Network Layer: 4-106

OpenFlow: flow table entries

Match Action Stats

Packet + byte counters

1. Forward packet to port(s)

2. Drop packet
3. Modify fields in header(s)
4. Encapsulate and forward to controller

Header fields to match:

Ingress A\ A IP P TCP/UDP TCP/UDP

Pot MAC MAC S BIESEES SIEDSE SSvte’ 'Tos® SrcPort Dst Port

1 1 1

Link layer Network layer Transport layer
Network Layer: 4-107

OpenFlow: examples

Destination-based forwarding:

Switch| MAC | MAC | Eth | VLAN | VLAN IP IP P IP TCP | TCP Acti
Port Src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port ction
* * * * * * * 51.6.0.8 * * * * port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:
Switch| MAC | MAC | Eth |VLAN |VLAN| IP IP IP IP TCP | TCP Acti
Port src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port ction
* * * * * * * * * * * 22 drop
Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)
Switch| MAC | MAC | Eth |VLAN |VLAN| IP IP IP IP TCP | TCP Acti
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port ction
% * * * * * 128.119.1.1 * * * * * drop

Block (do not forward) all datagrams sent by host 128.119.1.1

Network Layer: 4-108

OpenFlow: examples

Layer 2 destination-based forwarding:

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

VLAN
Pri

P
Src

P
Dst

|P
Prot

IP
ToS

TCP

s-port

TCP
d-port

Action

*

22:A7:23:
11:E1:02

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to
output port 3

%

%

%

*

*

%

*

*

port3

Network Layer: 4-109

OpenFlow abstraction

" match+action: abstraction unifies different kinds of devices

Router Firewall

* match: longest * match: IP addresses and
destination IP prefix TCP/UDP port numbers

* action: forward out a * action: permit or deny
link

Switch NAT

* match: destination MAC match: IP address and port

address e action: rewrite address and

* action: forward or flood port

Network Layer: 4-110

OpenFlow example

Host h6 Orchestrated tables can create
&, 10.3.0.6

T.. network-wide behavior, e.g.,:

= datagrams from hosts h5 and
h6 should be sent to h3 or h4,
via s1 and from there to s2

Host h5

10.1.0.2

Network Layer: 4-111

OpenFlow example

match action
Se=a g:ZHost h6 Orchestrated tables can create
IP Dst = 10.2.* * | forward(3d) | ««8%10.3.0.6

<3 network-wide behavior, e.g.,:

N/ = datagrams from hosts h5 and

— ° h6 should be sent to h3 or h4,
oS .
10.3.0.5 via s1 and from there to s2

Host hl
10.1.0.1 e

V{ Host h4
Y el 10204

~ q
match action e :‘(’Eﬁs | match action
IP Src f 10.3.:.: forward(4) naress por:[- 2
Post= 1027 IP Dst = 10.2.0.4| "orard)

Network Layer: 4-112

Generalized forwarding: summary

= “match plus action” abstraction: match bits in arriving packet header(s) in
any layers, take action
* matching over many fields (link-, network-, transport-layer)
* local actions: drop, forward, modify, or send matched packet to
controller
e “program” network-wide behaviors
= simple form of “network programmability”
* programmable, per-packet “processing”
* historical roots: active networking
* today: more generalized programming:
P4 (see p4.org).

Network Layer: 4-113

Network layer: “data plane” roadmap

= Middleboxes

e middlebox functions

e evolution, architectural principles of
the Internet

Network Layer: 4-114

Middleboxes

— Middlebox (RFC 3234)

“any intermediary box performing functions apart
from normal, standard functions of an IP router on
the data path between a source host and
destination host”

Middleboxes everywhere!

Firewalls, IDS: corporate,
institutional, service providers,

national or gIob ISPs
NAT: home, @’v
| ct(?tll utl_a r, | @@
institutiona
Load balancers:
Vel | o rporate, service
LR = S corporate,
« m ."‘ o provider, data center,
o == SR @“ mobile nets
Application-
specific: service 3 = catscenter
providers, = . .
institutional, < 4 | Caches: service
CDN e provider, mobile, CDNs
enterprise

network

Middleboxes

= initially: proprietary (closed) hardware solutions

" move towards “whitebox” hardware implementing open API
" move away from proprietary hardware solutions
= programmable local actions via match+action
= move towards innovation/differentiation in software

= SDN: (logically) centralized control and configuration management
often in private/public cloud

" network functions virtualization (NFV): programmable services over
white box networking, computation, storage

The IP hourglass

HTTP ~ SMTP RTP

)t - _ QUIC DASH
Internet’s “thin waist”: many protocols
= one net\lNork layer TCP UDP in physical, link
protocol: IP
= must be implemented IP transport, and
by every (billions) of TR—— application
Internet-connected PDCP WiFi Bluetooth layers
devices

copper radio fiber

The IP hourglass, at middle age

HTTP SMTP RTP
QUIC DASH

TCP UDP

Internet’s middle age

“love handles”?

= middleboxes,
operating inside the
network

caching
WK p ey
Firewalls
Ethernet PPP
PDCP WiFi Bluetooth

copper radio fiber

Architectural Principles of the Internet

— RFC 1958

“Many members of the Internet community would argue that there is no architecture, but only a tradition,
which was not written down for the first 25 years (or at least not by the IAB). However, in very general terms,

the community believes that the o0gl is connectivity, the tool is the Internet
Protocol, and the intelligence is end to end rather than hidden in the
network.”

Three cornerstone beliefs:
" simple connectivity
= |P protocol: that narrow waist
" intelligence, complexity at network edge

The end-end argument

= some network functionality (e.g., reliable data transfer, congestion)
can be implemented in network, or at network edge

end-end implementation of reliable data transfer
transport |M8 2 transport
network network
data link) data link
physical “ physical

application

application
transport
network
data link
physical

transport

hop-by-hop (in-network) implementation of reliable data transfer
data link |

physical | <= =F

5 o e —— e s e e - o] i

link link link link link physical

z > physical physical physical physical physical
< 's < ~ TS < N

The end-end argument

= some network functionality (e.g., reliable data transfer, congestion)
can be implemented in network, or at network edge

“The function in question can completely and correctly be implemented only
with the knowledge and help of the application standing at the end points of the
communication system. Therefore, providing that questioned function as a
feature of the communication system itself is not possible. (Sometimes an

incomplete version of the function provided by the communication system may
be useful as a performance enhancement.)

We call this line of reasoning against low-level function implementation the “end-
to-end argument.”

Saltzer, Reed, Clark 1981

Where’s the intelligence?

8

?\ﬂ‘

= ®
@

& k-
& h

20 century phone net: Internet (pre-2005) Internet (post-2005)
* intelligence/computing at * intelligence, computing at * programmable network devices
network switches edge * intelligence, computing, massive

application-level infrastructure at edge

Chapter 4: done!

= Network layer: overview

=" What's inside a router

= |P: the Internet Protocol

" Generalized Forwarding, SDN
" Middleboxes

IP fragmentation/reassembly

" network links have MTU (max.
transfer size) - largest possible
link-level frame

w
i
e different link types, different MTUs N

= large IP datagram divided
(“fragmented”) within net

e one datagram becomes several
datagrams

* “reassembled” only at destination

* |P header bits used to identify, order
related fragments -

fragmentation:
In: one large datagram
out: 3 smaller datagrams

Network Layer: 4-125

IP fragmentation/reassembly

example:

= 4000 byte datagram
= MTU = 1500 bytes

length
=4000

ID
=X

fragflag
=0

offset
=0

one large datagram becomes
several smaller datagrams

1480 bytes in length | ID | fragflag | offset
data field =1500 | =x =1 =0
offset = length [ID | fragflag | offset
1480/8 =1500 | =x =1 =185
length | ID | fragflag | offset

=1040 [=x =0 =370

Network Layer: 4-126

Chapter 4: done!

control
L plane
Local forwarding data
table I ne
header output p a
0100 3
0110 2
0111 2
1001 1

values in arriving
packet heade

Network Layer: 4-127

	Default Section
	Slide 1

	Section 4
	Slide 96: Network layer: “data plane” roadmap
	Slide 97: Router: Forwarding Table
	Slide 98: Router: Forwarding Table
	Slide 99: Router: Forwarding Table
	Slide 100: Router: Forwarding Table
	Slide 101: Router: Forwarding Table
	Slide 102: Generalization: Match and action
	Slide 103: Generalized forwarding: match plus action
	Slide 104: Flow table abstraction
	Slide 105: Flow table abstraction
	Slide 106: Open Flow: the communication protocol
	Slide 107: OpenFlow: flow table entries
	Slide 108: OpenFlow: examples
	Slide 109: OpenFlow: examples
	Slide 110: OpenFlow abstraction
	Slide 111: OpenFlow example
	Slide 112: OpenFlow example
	Slide 113: Generalized forwarding: summary
	Slide 114: Network layer: “data plane” roadmap
	Slide 115: Middleboxes
	Slide 116: Middleboxes everywhere!
	Slide 117: Middleboxes
	Slide 118: The IP hourglass
	Slide 119: The IP hourglass, at middle age
	Slide 120: Architectural Principles of the Internet
	Slide 121: The end-end argument
	Slide 122: The end-end argument
	Slide 123: Where’s the intelligence?
	Slide 124: Chapter 4: done!
	Slide 125: IP fragmentation/reassembly
	Slide 126: IP fragmentation/reassembly
	Slide 127: Chapter 4: done!

